• Title/Summary/Keyword: Protein Synthesis

Search Result 1,820, Processing Time 0.029 seconds

Influence of Chicken Embryo Extract on Protein Synthesis of Chicken Embryo Myoblasts Depends on Cell Density

  • Kita, K.;Hiramatsu, K.;Okumura, Jun-ichi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.11 no.6
    • /
    • pp.713-717
    • /
    • 1998
  • The synergistic effect of fetal calf serum (FCS) and chicken embryo extract (CEE) on protein synthesis of chicken embryo myoblasts was examined. Myoblasts were derived from chicken embryo cultured for 14 days by trypsin digestion and cultured in 5% $CO^2/95%$ air at $37^{\circ}C$. When myoblasts were cultured at the low level of cell density (20-50% of well), CEE enhanced the ability of FCS to stimulate protein synthesis of myoblasts. However, there was no significant effect of CEE to stimulate protein synthesis of myoblasts cultured at high level of cell density (100% of well).

Near Infrared Spectroscopy for Measuring Purine Derivatives in Urine and Estimation of Microbial Protein Synthesis in the Rumen for Sheep

  • Atanassova, Stefka;Iancheva, Nana;Tsenkova, Roumiana
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1273-1273
    • /
    • 2001
  • The efficiency of the luminal fermentation process influences overall efficiency of luminal production, animal health and reproduction. Ruminant production systems have a significant impact on the global environment, as well. Animal wastes contribute to pollution of the environment as ammonia volatilized to the air and nitrate leached to ground water. Microbial protein synthesis in the rumen satisfies a large proportion of the protein requirements of animals. Quantifying the microbial synthesis is possible by using markers for lumen bacteria and protozoa such as nucleic acids, purine bases, some specific amino acids, or by isotopic $^{15}N,^{32}P,\;and\;^{35}S$ labelled feeds. All those methods require cannulated animals, they are time-consuming and some methods are very expensive as well. Many attempts have been made to find an alternative method for indirect measurement of microbial synthesis in intact animals. The present investigations aimed to assess possibilities of NIRS for prediction of purine nitrogen excretion and ruminal microbial nitrogen synthesis by NIR spectra of urine. Urine samples were collected from 12 growing sheep,6 of them male, and 6- female. The sheep were included in feeding experiment. The ration consisted of sorghum silage and protein supplements -70:30 on dry matter basis. The protein supplements were chosen to differ in protein degradability. The urine samples were collected daily in a vessel containing $60m{\ell}$ 10% sulphuric acid to reduce pH below 3 and diluted with tap water to 4 liters. Samples were stored in plastic bottles and frozen at $-20^{\circ}C$ until chemical and NIRS analysis. The urine samples were analyzed for purine derivates - allantoin, uric acid, xantine and hypoxantine content. Microbial nitrogen synthesis in the lumen was calculated according to Chen and Gomes, 1995. Transmittance urine spectra with sample thickness 1mm were obtained by NIR System 6500 spectrophotometer in the spectral range 1100-2500nm. The calibration was performed using ISI software and PLS regression, respectively. The following statistical results of NIRS calibration for prediction of purine derivatives and microbial protein synthesis were obtained.(Table Omitted). The result of estimation of purine nitrogen excretion and microbial protein synthesis by NIR spectra of urine showed accuracy, adequate for rapid evaluation of microbial protein synthesis for a large number of animals and different diets. The results indicate that the advantages of the NIRS technology can be extended into animal physiological studies. The fast and low cost NIRS analyses could be used with no significant loss of accuracy when microbial protein synthesis in the lumen and the microbial protein flow in the duodenum are to be assessed by NIRS.

  • PDF

DIETARY MEDIUM CHAIN TRIGLYCERIDE INCREASE LIVER PROTEIN SYNTHESIS IN CHICKS

  • Kita, Kazumi;Mabayo, R.T.;Furuse, M.;Okumura, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.6 no.3
    • /
    • pp.339-342
    • /
    • 1993
  • This influence of dietary medium chain triglyceride on liver protein synthesis in chicks was investigated using a large dose injection of $L-[4-^3H]$ phenylalanine. Dietary medium chain triglyceride increased liver weight and liver fat content of chicks compared to the long chain triglyceride group. Fractional synthesis rate of liver protein was increased by dietary medium chain triglyceride, which was accounted for not by elevating protein synthesized per unit RNA but by enhancing RNA: protein ratio.

THE EFFECT OF TENSILE FORCE ON DNA AND PROTEIN SYNTHESIS IN BONE CELLS (인장력이 골조직 세포군의 DNA 및 단백합성에 미치는 영향)

  • Kwon, Oh-Sun;Kim, Sang-Cheol
    • The korean journal of orthodontics
    • /
    • v.24 no.4 s.47
    • /
    • pp.933-943
    • /
    • 1994
  • The present study was undertaken to determine the effect of tensile force on DNA and protein biosynthesis in bone cells, and to identify the cell type(s) which primarily respond to external physical force among the heterogenous bone cell populations. As a prerequisite for this study, two bone cell populations which retain fibroblastic and osteoblastic feature were isolated from fetal rat calvaria with sequential enzyme digestion scheme. Tensile force was delivered to each bone cell population by two acrylic resin plates connected with a orthodontic expansion screw during culture period. Rate of DNA and protein synthesis in each bone cell population were assessed by the incorporated radioactivity of $[^3H]-thymidine$ into DNA and $[^3H]-proline$ into fraction of collagenase-digestible protein and noncollagenous protein, respectively. DNA synthesis of osteoblast-like calvarial cell populations was increased significantly by the application of tensile force for 24 hours. In contrast, no alteration in DNA synthesis of fibroblast-like populations could be observed in response to applied force. Tensile force induced the change in protein synthesis of bone cell populations with the same pattern. Total protein and collagen synthesis were increased whithin 24 hours in osteoblast-like populations, but not in fibroblast-like populations by tensile force application. These findings indicate that physical force can affect cellullar activity of the particular cell population, not all cell Populations residing in bone and osteoblasts respond more sensitively than fibroblasts. So osteoblasts can modulate the behavior of other bone cells including osteoclasts by producing several local regulating factors of bone metabolism. In this context, preferential responsiveness of osteoblasts to applied tensile force observed in this study suggests that osteoblasts may play an important role in regulation of physical force-induced remodelling process.

  • PDF

Expression of a Small Protein Encoded by the 3' Flanking Sequence of the Escherichia coli rnpB Gene

  • Kim, Yool;Han, Kook;Lee, Jung-Min;Kim, Kwang-Sun;Lee, Young-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.6
    • /
    • pp.1010-1014
    • /
    • 2007
  • M1 RNA is the catalytic component of RNase P, a tRNA-processing enzyme in Escherichia coli. M1 RNA is produced in the cell by transcription of the rnpB gene and subsequent processing at the 3' end. The 3' flanking region of rnpB contains repeated sets of overlapping sequences coding for small proteins. The issue of whether these proteins are expressed remains to be established. In this study, we showed the expression of a small protein encoded by the first repeat within the 3' flanking region of rnpB. Interestingly, protein expression was increased at lower temperatures. The termination efficiency of rnpB terminators was decreased at lower temperatures, suggesting that antitermination is responsible for enhanced protein expression. Moreover, the purified small protein contained M1 RNA, implying a role as a specific RNA-binding protein.

Simulation of the Effect of Protein Quality at the Different Protein Intake Level on Protein Metabolism (각기 다른 단백질섭취 수준에서 본 식이단백질의 질이 단백질대사에 미치는 영향 -Simulation Model을 이용하여-)

  • 이옥희
    • Journal of Nutrition and Health
    • /
    • v.26 no.9
    • /
    • pp.1033-1048
    • /
    • 1993
  • This study was designed to describe the effect of the protein quality at different intake level of protein on the protein metabolism in the whole body of growing pigs with a simulation model. Varying to the protein level in feeds, four simulations were conducted. The feed protein level, represented as proportions of digestible protein to the metabolic energy (DP/ME, g/MJ), were 6-8, 11-13, 17-19, and 23-25 DP/ME, respectively. Two protein quality and six weeks of growth time were used at each simulation. The objective function for the simulations was protein deposition in the whole body, which was calculated from the experimental results. The parameters in the simulation were determined by the parameter estimation technique. The results obtained from the simulation were as follows: The protein synthesis and breakdown rates(g/day) in the whole body was increased with the increase of protein quality only at lower or required level of protein intake. They showed a parallel behavior in the course of growth, irrespective of quality and level of feed protein intake. The simulated protein deposition and protein synthesis showed a linear relationship between them at different protein quality and level. The affinity parameter showed a linear relationship between them at different protein quality and level. The affinity parameter showed that arginine, tryptophan and isoleucine were more efficient in the stimulation ofbody protein synthesis. Lysine and phenylalanine+tyrosine were less efficient. The oxidation parameter showed that histidine, pheyalanine+tyrosine were less efficient. The oxidation parameter showed that histidine, phenyalanine+tyrosine, and methionine+cystine were oxidized in larger magnitude than lysine and threonine. The oxidation parameter of most amino acids increased with the increase of protein intake beyond the requirement level, but not any more at highest protein intake level. Finally it was found that the improvement of feed protein quality at the lower or required level of protein intake increase protein deposition through a parallel increase of protein synthesis and breakdown.

  • PDF

Effects of the Protein Fraction of Panax ginseng on Primary Cultured Chicken Brain Cells and DRG (인삼 단백분획물이 일차배양한 계배의 뇌세포 및 DRG에 미치는 영향)

  • Park, Mi-Jung;Song, Jin-Ho;Kim, Sun-Yeou;Kim, Young-Choong
    • YAKHAK HOEJI
    • /
    • v.34 no.5
    • /
    • pp.365-373
    • /
    • 1990
  • The effects of the protein fraction of Panax ginseng on primary cultured chicken embryonic brain cells and DRG cultured with a deficient medium were studied. The protein fraction was further fractionated into four groups according to the molecular weight; larger than 10,000 dalton(fraction A), between 5,000 and 10,000 daltons(fraction B), between 1,000 and 5,000 daltons(fraction C), between 500 and 1,000 daltons(fraction D). All four protein fractions at the concentration of $100\;{\mu}g/ml$ significantly increased the number of the brain cells which promoted the neurite outgrowth. The activity of PDHC in the brain cells was elevated significantly by the protein fraction B at the concentration of $100\;{\mu}g/ml$. It was noted that $100\;{\mu}g/ml$ protein fraction C and D significantly enhanced the synthesis of protein in the brain cells. At the concentration of $100\;{\mu}g/ml$, the protein fraction B enhanced RNA synthesis and the protein fraction A significantly enhanced DNA synthesis in the brain cells. The protein fractions B, C, and D significantly promoted the neurite outgrowth of DRG at the concentration of $100\;{\mu}g/ml$.

  • PDF

Regulation of Chlorophyll-Protein Complex Formation and Assembly in Wheat Thylakoid Membrane

  • Guseinova, I.M.;Suleimanov, S.Y.;Aliev, J.A.
    • BMB Reports
    • /
    • v.34 no.6
    • /
    • pp.496-501
    • /
    • 2001
  • Lincomycin, an inhibitor of plastid protein synthesis, was found to block the synthesis of apoprotein P700 with a molecular mass of 72 kDa and the assembly of the Chl a-protein of PS I. Synthesis of the polypeptides of 48, 43.5, and 32 kDa of the PS II complex is also suppressed. This process is accompanied by the disappearance of the PS Two reaction center Chl a at 683 nm, and of the PS One reaction center Chl a at 690, 696, and 705 nm on the fourth derivative of the absorption spectra at 77K. Lincomycin does not affect the synthesis of LHC subunits. It increases the content of the two main Chl forms of LHC at 648 nm (Chl b) and 676 nm (Chl a). The low-temperature fluorescence ratio F736/F685 is also increased. However, the effect of cycloheximide (an inhibitor of cytoplasmic protein synthesis) leads to the reduction of polypeptides of the light-harvesting Chl a/b-protein complex in the range of 29.5-22 kDa. Under these conditions, the relative amount of Chl b and the F736/ F685 fluorescence ratio decrease significantly. This is obviously the result of blocking the LHC I and LHC II synthesis. At the same time rifampicin and actinomycin D (inhibitors which block transcription in chloroplast and nuclear genome, respectively) inessentially affect the characteristics of these complexes.

  • PDF

Effect of Polyacetylene Compounds from Panax Ginseng on Macromolecule Synthesis of Lymphoid lukemia L1210 (인삼 포리아세틸렌 화합물이 Lymphoid lukemia L1210의 고분자물질 합성에 미치는 영향)

  • Kim, Young-Sook;Kim, Shin-Il;Hahn, Dug-Ryong
    • YAKHAK HOEJI
    • /
    • v.32 no.2
    • /
    • pp.137-140
    • /
    • 1988
  • To investigate polyacetylene compounds isolated from petroleum ether extract of panax ginseng effect on the macromolecule synthesis, lympoid lukemia L1210 cell was incubated with them at 4, 8, 12,16 hours. Panaxydol, panaxynol and panaxytriol as cytotoxic substances inhibited the synthesis of macromolecule such as DNA, RNA and protein. Panaxydol which had the most potent cytotoxicity among these three compounds showed the strongest inhibitory effect on DNA, RNA and protein synthesis. For DNA and RNA synthesis, panaxynol and panaxytriol decreased the rate of inhibition with the incubation time but panaxydol had a strongest inhibitory effect at 16 hour incubation time. Protein synthesis was markedly inhibited by all these polyacetylene compounds. It was obserbed that there is a relationship between cytotoxicities of polyacetylene compounds and the inhibition of macromolecule synthesis.

  • PDF

Functional Analysis of the Invariant Residue G791 of Escherichia coli 16S rRNA

  • Song, Woo-Seok;Kim, Hong-Man;Kim, Jae-Hong;Sim, Se-Hoon;Ryou, Sang-Mi;Kim, Sang-Goo;Cha, Chang-Jun;Cunningham, Philip R.;Bae, Jee-Hyeon;Lee, Kang-Seok
    • Journal of Microbiology
    • /
    • v.45 no.5
    • /
    • pp.418-421
    • /
    • 2007
  • The nucleotide at position 791(G791) of E. coli 16S rRNA was previously identified as an invariant residue for ribosomal function. In order to characterize the functional role of G791, base substitutions were introduced at this position, and mutant ribosomes were analyzed with regard to their protein synthesis ability, via the use of a specialized ribosome system. These ribosomal RNA mutations attenuated the ability of ribosomes to conduct protein synthesis by more than 65%. A transition mutation (G to A) exerted a moderate effect on ribosomal function, whereas a transversion mutation (G to C or U) resulted in a loss of protein synthesis ability of more than 90%. The sucrose gradient profiles of ribosomes and primer extension analysis showed that the loss of protein-synthesis ability of mutant ribosomes harboring a base substitution from G to U at position 791 stems partially from its inability to form 70S ribosomes. These findings show the involvement of the nucleotide at position 791 in the association of ribosomal subunits and protein synthesis steps after 70S formation, as well as the possibility of using 16S rRNA mutated at position 791 for the selection of second-site revertants in order to identify ligands that interact with G791 in protein synthesis.