• Title/Summary/Keyword: Protein Structure and Function

Search Result 318, Processing Time 0.042 seconds

Composition, Structure, and Bioactive Components in Milk Fat Globule Membrane

  • Ahn, Yu-Jin;Ganesan, Palanivel;Kwak, Hae-Soo
    • Food Science of Animal Resources
    • /
    • v.31 no.1
    • /
    • pp.1-8
    • /
    • 2011
  • A unique biophysical membrane which surrounds the milk fat globules is called the milk fat globule membrane (MFGM). Various researches were studied about origin, composition, structure and bioactive components of MFGM. Bioactive protein components of MFGM play an important beneficiary function such as defense mechanism in new born. Among the bioactive lipid components from MFGM phospholipids showed health enhancing functions. The phospholipids also help in the production of certain dairy product from deterioration. MFGM phospholipids also showed antioxidant activity in some dairy products such as butter and ghee produced from milk of buffalo. Based on the beneficial effects, researchers developed MFGM as functional ingredients in various food products. This current review focuses on health enhancing function of MFGM and its components in various dairy products.

Study of protein loop conformational changes by free energy estimation using colony energy

  • Kang, Beom Chang;Lee, Gyu Rie;Seok, Chaok
    • Proceeding of EDISON Challenge
    • /
    • 2014.03a
    • /
    • pp.63-74
    • /
    • 2014
  • Predicting protein loop structures is an important modeling problem since protein loops are often involved in diverse biological functions by participating in enzyme active sites, ligand binding sites, etc. However, loop structure prediction is difficult even when structures of homologous proteins are known due to large sequence and structure variability among loops of homologous proteins. Therefore, an ab initio approach is necessary to solve loop modeling problems. One of the difficulties in the development of ab initio loop modeling method is to derive an accurate scoring function that closely approximates the true free energy function. In particular, entropy as well as energy contribution have to be considered adequately for loops because loops tend to be flexible compared to other parts of protein. In this study, the contribution of conformational entropy is considered in scoring loop conformations by employing "colony energy" which was previously proposed to estimate the free energy for an ensemble of conformations. Loop conformations were generated by using two EDISON_Chem programs GalaxyFill and GalaxySC, and colony energy was designed for this sampling by tuning relevant parameters. On a test set of 40 loops, the accuracy of predicted loop structure improved on average by scoring with the colony energy compared to scoring by energy alone. In addition, high correlation between colony energy and deviation from the native structure suggested that more extensive sampling can further improve the prediction accuracy. In another test on 6 ligand-binding loops that show conformational changes by ligand binding, both ligand-free and ligand-bound states could be identified by using colony energy when no information on the ligand-bound conformation is used.

  • PDF

Feature Selection and Classification of Protein CDS Using n-Block substring weighted Linear Model (N-Block substring 가중 선형모형을 이용한 단백질 CDS의 특징 추출 및 분류)

  • Choi, Seong-Yong;Kim, Jin-Su;Han, Seung-Jin;Choi, Jun-Hyeog;Rim, Kee-Wook;Lee, Jung-Hyun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.5
    • /
    • pp.730-736
    • /
    • 2009
  • It is more important to analysis of huge gemonics data in Bioinformatics. Here we present a novel datamining approach to predict structure and function using protein's primnary structure only. We propose not also to develope n-Block substring search algorithm in reducing enormous search space effectively in relation to feature selection, but to formulate weighted linear algorithm in a prediction of structure and function of a protein using primary structure. And we show efficient in protein domain characterization and classification by calculation weight value in determining domain association in each selected substring, and also reveal that more efficient results are acquired through claculated model score result in an inference about degree of association with each CDS(coding sequence) in domain.

Structure Determination of Syndecan-4 Transmembrane Domain using PISA Wheel Pattern and Molecular Dynamics simulation

  • Choi, Sung-Sub;Jeong, Ji-Ho;Kim, Ji-Sun;Kim, Yongae
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.18 no.2
    • /
    • pp.58-62
    • /
    • 2014
  • Human transmembrane proteins (hTMPs) are closely related to transport, channel formation, signaling, cell to cell interaction, so they are the crucial target of modern medicinal drugs. In order to study the structure and function of these hTMPs, it is important to prepare reasonable amounts of proteins. However, their preparation is seriously difficult and time-consuming due to insufficient yields and low solubility of hTMPs. We tried to produce large amounts of Syndecan-4 transmembrane domain (Syd4-TM) that is related to the healing wounds and tumor for a long time. In this study, we performed the structure determination of Syd4-TM combining the Polarity Index at Slanted Angle (PISA) wheel pattern analysis based on $^{15}N-^1H$ 2D SAMPI-4 solid-state NMR of expressed Syd4-TM and Molecular Dynamics (MD) simulation using Discovery Studio 3.1.

Crystallization of Escherichia coli IciA Protein An Initiation of Chroirnsomal Replication (대장균 염색체 복제 개시 저해제, IciA 단백질의 결정화)

  • Song, Hyun-Kyu;Cha, Hoon;Yoo, Soon-Ji;Chung, Chin-Ha;Hwang, Deog-Su;Suh, Se-Won
    • Korean Journal of Crystallography
    • /
    • v.5 no.1
    • /
    • pp.20-23
    • /
    • 1994
  • Specific binding to the oric region of E, coli chromsome by IciA protein inhibits initiation of chrorrnsomal replication in vitro by blocking the opening of this region effected by the initiator DnaA protein. The IciA protein has been suggested play a critical role in a key stage of the cell cycle. In order to study the structure-function relationship of IciA protein, we are determining the three-dimensional structure of IciA Votein by X-ray crystallography, As a first step toward its structure detumination E. coli IciA protein has been crystallized using sodium formate as a precipitant.

  • PDF

Development of Crystallization Distinction Supporting System Using Image Processing

  • Saito, Kanako;Kawabata, Kuniaki;kunimitsu, Satoshi;Asama, Hajime;Mishima, Taketoshi
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1788-1791
    • /
    • 2002
  • In the post-genome era. it is one of important research subject to Investigate the roles of the proteins in human body based on decoded genome information during Human Genome Project. In order to clarify them. it is necessary to analyze the structure of the protein crystals and their function. ' Crystallization is the beginning stage of protein structure determination process. There are some methods for structural analysis of the proteins, and general one is X-ray structural analysis method. In order to utilize this method for analyzing the protein crystal's structure, artificial protein crystallization is required. However, since artificial crystallizing work takes much time and manpower. the performance against its cost is still low. Therefore. we started to discuss to develop a supporting system for improving efficiency of the crystallization distinction procedure. In this paper, we examine to realize such supporting system for crystallization distinction using image-processing technique and report about our experimental result with many real protein solution images.

  • PDF

Effect of Mutagenesis of V111 and L112 on the Substrate Specificity of Zymomonas mobilis Pyruvate Decarboxylase

  • Huang, Chang-Yi;Nixon, Peter F.;Duggleby, Ronald G.
    • BMB Reports
    • /
    • v.32 no.1
    • /
    • pp.39-44
    • /
    • 1999
  • Pyruvate decarboxylase (PDC) catalyzes the conversion of pyruvate to acetaldehyde as the penultimate step in alcohol fermentation. The enzyme requires two cofactors, thiamin diphosphate (ThDP) and $Mg^{2+}$, for activity. Zymomonas mobilis PDC shows a strong preference for pyruvate although it will use the higher homologues 2-ketobutyrate and 2-ketovalerate to some extent. We have investigated the effect of mutagenesis of valine 111 and leucine 112 on the substrate specificity. V111 was replaced by glycine, alanine, leucine, and isoleucine while L112 was replaced by alanine, valine, and isoleucine. With the exception of L112I, all mutants retain activity towards pyruvate with $k_{cat}$ values ranging from 40% to 139% of wild-type. All mutants show changes from wild-type in the affinity for ThDP, and several (V111A, L112A, and L112V) show decreases in the affinity for $Mg^{2+}$. Two of the mutants, V111G and V111A, show an increase in the $K_m$ for pyruvate. The activity of each mutant towards 2-ketobutyrate and 2-ketovalerate was investigated and some changes from wild-type were found. For the V111 mutants, the most notable of these is a 3.7-fold increase in the ability to use 2-ketovalerate. However, the largest effect is observed for the L112V mutation which increases the ability to use both 2-ketobutyrate (4.3-fold) and 2-ketovalerate (5.7-fold). The results suggest that L112 and, to a lesser extent, V111 are close to the active site and may interact with the alkyl side-chain of the substrate.

  • PDF

Backbone 1H, 15N, and 13C Resonance Assignment and Secondary Structure Prediction of HP0495 from Helicobacter pylori

  • Seo, Min-Duk;Park, Sung-Jean;Kim, Hyun-Jung;Seok, Seung-Hyeon;Lee, Bong-Jin
    • BMB Reports
    • /
    • v.40 no.5
    • /
    • pp.839-843
    • /
    • 2007
  • HP0495 (Swiss-Prot ID; Y495_HELPY) is an 86-residue hypothetical protein from Helicobacter pylori strain 26695. The function of HP0495 cannot be identified based on sequence homology, and HP0495 is included in a fairly unique sequence family. Here, we report the sequencespecific backbone resonance assignments of HP0495. About 97% of all the $^1HN$, $^{15}N$, $^{13}C{\alpha}$, $^{13}C{\beta}$, and $^{13}CO$ resonances were assigned unambiguously. We could predict the secondary structure of HP0495, by analyzing the deviation of the $^{13}C{\alpha}$ and $^{13}C{\beta}$ shemical shifts from their respective random coil values. Secondary structure prediction shows that HP0495 consists of two $\alpha$-helices and four $\beta$-strands. This study is a prerequisite for determining the solution structure of HP0495 and investigating the protein-protein interaction between HP0495 and other Helicobacter pylori proteins.

Protein Tertiary Structure Prediction Method based on Fragment Assembly

  • Lee, Julian;Kim, Seung-Yeon;Joo, Kee-Hyoung;Kim, Il-Soo;Lee, Joo-Young
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2004.11a
    • /
    • pp.250-261
    • /
    • 2004
  • A novel method for ab initio prediction of protein tertiary structures, PROFESY (PROFile Enumerating SYstem), is introduced. This method utilizes secondary structure prediction information and fragment assembly. The secondary structure prediction of proteins is performed with the PREDICT method which uses PSI-BLAST to generate profiles and a distance measure in the pattern space. In order to predict the tertiary structure of a protein sequence, we assemble fragments in the fragment library constructed as a byproduct of PREDICT. The tertiary structure is obtained by minimizing the potential energy using the conformational space annealing method which enables one to sample diverse low lying minima of the energy function. We apply PROFESY for prediction of some proteins with known structures, which shows good performances. We also participated in CASP5 and applied PROFESY to new fold targets for blind predictions. The results were quite promising, despite the fact that PROFESY was in its early stage of development. In particular, the PROFESY result is the best for the hardest target T0161.

  • PDF

Molecular Characterization of a Bombyx mori Protein Disulfide Isomerase(bPDI) (누에 배양세포로부터 분리한 Protein Disulfide Isomerase 유전자의 발현 특성)

  • 구태원;윤은영;황재삼;강석우;권오유
    • Journal of Life Science
    • /
    • v.11 no.5
    • /
    • pp.415-422
    • /
    • 2001
  • Many secreted proteins have disulfide bonds that are important for their structure and function. Protein disulfide isomerase (PDI, EC 5.3.1.4.), an enzyme that catalyzes the formation and rearrangement of thiol/disulfide exchange reactions, is a resident of the endoplasmic reticulum (ER). The subcellular localization and its function as catalyst of disulfide bond formation in the biosynthesis of secretory and cell membrane proteins suggest that PDI plays a key role in the secretory pathway. We have isolated a cDNA encoding protein disulfide isomerase from Bombyx mori(bPDI). It has been characterized under ER stress conditions (dominantly induced by calcium ionophore A23187, tunicamycin and DTT), which is known to cause an accumulation of unfolded proteins in the ER. Furthermore, It has also been examined for tissue distribution(pronounced at the fat body), hormonal regulation (juvenile hormone, insulin and juvenile +transferrin; however, it is not effected by transferrin alone), and the effect of exogenous bacteria (peak at 16 h after infection) on the bPDI mRNA expression. The results suggest that bPDI is a member of the ER stress protein group, and it may play an important role in exogenous bacterial infection in fat body, and that homones regulate its expression.

  • PDF