• 제목/요약/키워드: Protein Sequence

검색결과 2,317건 처리시간 0.041초

A 100 kDa Protein Binding to bHLH Family Consensus Recognition Sequence of RAT p53 Promoter

  • Lee, Min-Hyung;Park, Sun-Hee;Song, Hai-Sun;Lee, Kyung-Hee;Park, Jong-Sang
    • BMB Reports
    • /
    • 제30권3호
    • /
    • pp.205-210
    • /
    • 1997
  • p53 tumor suppressor plays an important role in the regulation of cellular proliferation. To identify proteins regulating the expression of p53 in rat liver, we analyzed p53 promoter by electrophoretic mobility shift assay (EMSA) and DNase I footprinting assay. We found that a protein binds the sequence CACGTG, bHLH consensus sequence in rat p53 promoter. Southwestern blotting analysis with oligonucleotides containing this sequence shows that the molecular weight of the protein is 100 kDa. This size is not compatible with the bHLH family such as USF or c-Myc/Max which is known to regulate the expression of the human and mouse p53 gene. Therefore this 100 kDa protein may be a new protein regulating basal transcription of rat p53. We purified this 100 kDa protein through sequence-specific DNA affinity chromatogaphy.

  • PDF

Identification of Viral Taxon-Specific Genes (VTSG): Application to Caliciviridae

  • Kang, Shinduck;Kim, Young-Chang
    • Genomics & Informatics
    • /
    • 제16권4호
    • /
    • pp.23.1-23.5
    • /
    • 2018
  • Virus taxonomy was initially determined by clinical experiments based on phenotype. However, with the development of sequence analysis methods, genotype-based classification was also applied. With the development of genome sequence analysis technology, there is an increasing demand for virus taxonomy to be extended from in vivo and in vitro to in silico. In this study, we verified the consistency of the current International Committee on Taxonomy of Viruses taxonomy using an in silico approach, aiming to identify the specific sequence for each virus. We applied this approach to norovirus in Caliciviridae, which causes 90% of gastroenteritis cases worldwide. First, based on the dogma "protein structure determines its function," we hypothesized that the specific sequence can be identified by the specific structure. Firstly, we extracted the coding region (CDS). Secondly, the CDS protein sequences of each genus were annotated by the conserved domain database (CDD) search. Finally, the conserved domains of each genus in Caliciviridae are classified by RPS-BLAST with CDD. The analysis result is that Caliciviridae has sequences including RNA helicase in common. In case of Norovirus, Calicivirus coat protein C terminal and viral polyprotein N-terminal appears as a specific domain in Caliciviridae. It does not include in the other genera in Caliciviridae. If this method is utilized to detect specific conserved domains, it can be used as classification keywords based on protein functional structure. After determining the specific protein domains, the specific protein domain sequences would be converted to gene sequences. This sequences would be re-used one of viral bio-marks.

Differentially Expressed Genes of Potentially Allelopathic Rice in Response against Barnyardgrass

  • Junaedi, Ahmad;Jung, Woo-Suk;Chung, Ill-Min;Kim, Kwang-Ho
    • Journal of Crop Science and Biotechnology
    • /
    • 제10권4호
    • /
    • pp.231-236
    • /
    • 2007
  • Differentially expressed genes(DEG) were identified in a rice variety, Sathi, an indica type showing high allelopathic potential against barnyardgrass(Echinochloa crus-galli(L.) Beauv. var. frumentaceae). Rice plants were grown with and without barnyardgrass and total RNA was extracted from rice leaves at 45 days after seeding. DEG full-screening was performed by $GeneFishing^{TM}$ method. The differentially expressed bands were re-amplified and sequenced, then analyzed by Basic Local Alignment Search Tool(BLAST) searching for homology sequence identification. Gel electrophoresis showed nine possible genes associated with allelopathic potential in Sathi, six genes(namely DEG-1, 4, 5, 7, 8, and 9) showed higher expression, and three genes(DEG-2, 3 and 6) showed lower expression as compared to the control. cDNA sequence analysis showed that DEG-7 and DEG-9 had the same sequence. From RT PCR results, DEG-6 and DEG-7 were considered as true DEG, whereas DEG-1, 2, 3, 4, 5, and 8 were considered as putative DEG. Results from blast-n and blast-x search suggested that DEG-1 is homologous to a gene for S-adenosylmethionine synthetase, DEG-2 is homologous to a chloroplast gene for ribulose 1,5-bisphosphate carboxylase large subunit, DEG-8 is homologous to oxysterol-binding protein with an 85.7% sequence similarity, DEG-5 is homologous to histone 2B protein with a 47.9% sequence similarity, DEG-6 is homologous to nicotineamine aminotransferase with a 33.1% sequence similarity, DEG-3 has 98.8% similarity with nucleotides sequence that has 33.1% similarity with oxygen evolving complex protein in photosystem II, DEG-7 is homologous to nucleotides sequence that may relate with putative serin/threonine protein kinase and putative transposable element, and DEG-4 has 98.8% similarity with nucleotides sequence for an unknown protein.

  • PDF

Molecular Cloning of a cDNA Encoding a Ferritin Subunit from the Spider, Araneus ventricosus

  • Jin, Byung-Rea;Han, Ji-Hee;Kim, Seong-Ryul;Sohn, Hung-Dae
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제4권2호
    • /
    • pp.163-168
    • /
    • 2002
  • We report for the first time the cDNA sequence encoding a ferritin subunit from the spiders Araneus ventricosus. The complete cDNA sequence of A. ventricosus ferritin subunit comprised 516 bp with 172 amino acid residues. The A. ventricosus ferritin subunit cDNA contained a conserved iron responsive element sequence in the 5 untranslated region. An alignment of the deduced protein sequence of the A. ventricosus ferritin subunit gene to that of other heavy chain ferritin molecules showed that A. ventricosus ferritin subunit is most similar to the great pond snail, Lymnaea stagnalis, ferritin with 70.2% of protein sequence identity.

Sequence Analysis and Potential Action of Eukaryotic Type Protein Kinase from Streptomyces coelicolor A3(2)

  • Roy, Daisy R.;Chandra, Sathees B.C.
    • Genomics & Informatics
    • /
    • 제6권1호
    • /
    • pp.44-49
    • /
    • 2008
  • Protein kinase C (PKC) is a family of kinases involved in the transduction of cellular signals that promote lipid hydrolysis. PKC plays a pivotal role in mediating cellular responses to extracellular stimuli involved in proliferation, differentiation and apoptosis. Comparative analysis of the PKC-${\alpha},{\beta},{\varepsilon}$ isozymes of 200 recently sequenced microbial genomes was carried out using variety of bioinformatics tools. Diversity and evolution of PKC was determined by sequence alignment. The ser/thr protein kinases of Streptomyces coelicolor A3 (2), is the only bacteria to show sequence alignment score greater than 30% with all the three PKC isotypes in the sequence alignment. S.coelicolor is the subject of our interest because it is notable for the production of pharmaceutically useful compounds including anti-tumor agents, immunosupressants and over two-thirds of all natural antibiotics currently available. The comparative analysis of three human isotypes of PKC and Serine/threonine protein kinase of S.coelicolor was carried out and possible mechanism of action of PKC was derived. Our analysis indicates that Serine/ threonine protein kinase from S. coelicolor can be a good candidate for potent anti-tumor agent. The presence of three representative isotypes of the PKC super family in this organism helps us to understand the mechanism of PKC from evolutionary perspective.

Cloning and Sequence Analysis of Ribosomal Protein S4 cDNA from Root of Panax ginseng

  • In Jun-Gyo;Lee Bum-Soo;Song Won-Seob;Bae Chang-Hyu;Choi Seong-Kyu;Yang Deok-Chun
    • Plant Resources
    • /
    • 제8권2호
    • /
    • pp.110-115
    • /
    • 2005
  • Ribosomal protein complex with ribosomal RNA to form the subunits of the ribosome serve essential functions in protein synthesis. A full-length cDNA (PRPS4) encoding ribosomal protein S4 has been isolated and its nucleotide sequence determined in ginseng plant (Panax ginseng). A PRPS4 cDNA is 1105 nucleotides long and has an open reading frame of 792 bp with a deduced amino acid sequence of 264 residues (pI 10.67). The deduced amino acid sequence of PRPS4 matched to the previously reported ribosomal protein S4 genes. Their degree of amino acid identity ranged from 68 to $92\%$. Phylogenetic analysis based on the amino acid residues showed that the PRPS4 grouped with ribosomal protein S4 of S. tuberosum (CAA54095).

  • PDF

미백제 스크리닝용 단백질칩의 개발 (Developing a Protein-chip for Depigmenting Agents Screening)

  • 김은기;곽은영;한정선;이향복;신정현
    • 대한화장품학회지
    • /
    • 제31권1호
    • /
    • pp.13-16
    • /
    • 2005
  • 미백 물질 탐색 방법으로, MC1R 발현 인자인 Mitf (microrhthalmia transcription factor)를 이용한 protein chip을 적용하였다. MC1R promoter와 Mitf 결합의 저해 인자로써, DNA 상의 결합 부위인 E-box (CATGTG)와 유사한 서열을 가진 oligomer를 사용하였고, E-box 내외부의 서열 변화에 따른 저해율 또한 측정하였다. 그 결과 DNA-Mitf 결합 저해율에 있어서, E-box 서열 내 변화를 준 oligonucleotide 경쟁자는, E-box 이외의 서열 변화를 준 경쟁자보다 낮은 수치를 보였다.

단백질 서열의 상동 관계를 가중 조합한 단백질 이차 구조 예측 (Prediction of Protein Secondary Structure Using the Weighted Combination of Homology Information of Protein Sequences)

  • 지상문
    • 한국정보통신학회논문지
    • /
    • 제20권9호
    • /
    • pp.1816-1821
    • /
    • 2016
  • 단백질은 대부분의 생물학적 과정에서 중대한 역할을 수행하고 있으므로, 단백질 진화, 구조와 기능을 알아내기 위하여 많은 연구가 수행되고 있는데, 단백질의 이차 구조는 이러한 연구의 중요한 기본적 정보이다. 본 연구는 대규모 단백질 구조 자료로부터 단백질 이차 구조 정보를 효과적으로 추출하여 미지의 단백질 서열이 가지는 이차 구조를 예측하려 한다. 질의 서열과 상동관계에 있는 단백질 구조자료내의 서열들을 광범위하게 찾아내기 위하여, 탐색에 사용하는 프로파일의 구성에 질의 서열과 유사한 서열들을 사용하고 갭을 허용하여 반복적인 탐색이 가능한 PSI-BLAST를 사용하였다. 상동 단백질들의 이차구조는 질의 서열과의 상동 관계의 강도에 따라 가중되어 이차 구조 예측에 기여되었다. 이차 구조를 각각 세 개와 여덟 개로 분류하는 예측 실험에서 상동 서열들과 신경망을 동시에 사용하여 93.28%와 88.79%의 정확도를 얻어서 기존 방법보다 성능이 향상되었다.

Protein Ontology: Semantic Data Integration in Proteomics

  • Sidhu, Amandeep S.;Dillon, Tharam S.;Chang, Elizabeth;Sidhu, Baldev S.
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2005년도 BIOINFO 2005
    • /
    • pp.388-391
    • /
    • 2005
  • The Protein Structural and Functional Conservation need a common language for data definition. With the help of common language provided by Protein Ontology the high level of sequence and functional conservation can be extended to all organisms with the likelihood that proteins that carry out core biological processes will again be probable orthologues. The structural and functional conservation in these proteins presents both opportunities and challenges. The main opportunity lies in the possibility of automated transfer of protein data annotations from experimentally traceable model organisms to a less traceable organism based on protein sequence similarity. Such information can be used to improve human health or agriculture. The challenge lies in using a common language to transfer protein data annotations among different species of organisms. First step in achieving this huge challenge is producing a structured, precisely defined common vocabulary using Protein Ontology. The Protein Ontology described in this paper covers the sequence, structure and biological roles of Protein Complexes in any organism.

  • PDF

유전자 및 유전체 연구 기술과 동향 (Trend and Technology of Gene and Genome Research)

  • 이진성;김기환;서동상;강석우;황재삼
    • 한국잠사곤충학회지
    • /
    • 제42권2호
    • /
    • pp.126-141
    • /
    • 2000
  • A major step towards understanding of the genetic basis of an organism is the complete sequence determination of all genes in target genome. The nucleotide sequence encoded in the genome contains the information that specifies the amino acid sequence of every protein and functional RNA molecule. In principle, it will be possible to identify every protein resposible for the structure and function of the body of the target organism. The pattern of expression in different cell types will specify where and when each protein is used. The amino acid sequence of the proteins encoded by each gene will be derived from the conceptional translation of the nucleotide sequence. Comparison of these sequences with those of known proteins, whose sequences are sorted in database, will suggest an approximate function for many proteins. This mini review describes the development of new sequencing methods and the optimization of sequencing strategies for whole genome, various cDNA and genomic analysis.

  • PDF