• Title/Summary/Keyword: Protein Kinase C(PKC)

Search Result 302, Processing Time 0.022 seconds

Expression of Phospholipase C Isozymes in Human Lung Cancer Tissues (인체 폐암조직에서 Phospholipase C 동위효소의 발현양상)

  • Hwang, Sung-Chul;Mah, Kyung-Ae;Choi, So-Yeon;Oh, Yoon-Jung;Choi, Young-In;Kim, Deog-Ki;Lee, Hyung-Noh;Choi, Young-Hwa;Park, Kwang-Ju;Lee, Yi-Hyeong;Lee, Kyi-Beom;Ha, Mahn-Joon;Bae, Yoon-Su
    • Tuberculosis and Respiratory Diseases
    • /
    • v.49 no.3
    • /
    • pp.310-322
    • /
    • 2000
  • Background : Phospholipase C(PLC) plays an important role in cellular signal transduction and is thought to be critical in cellular growth, differentiation and transformation of certain malignancies. Two second messengers produced from the enzymatic action of PLC are diacylglycerol (DAG) and inositol 1, 4, 5-trisphosphate (IP3). These two second messengers are important in down stream signal activation of protein kinase C and intracellular calcium elevation. In addition, functional domains of the PLC isozymes, such as Src homology 2 (SH2) domain, Src homology 3 (SH3) domain, and pleckstrin homology (PH) domain play crucial roles in protein translocation, lipid membrane modificailon and intracellular memrane trafficking which occur during various mitogenic processes. We have previously reported the presence of PLC-${\gamma}1$, ${\gamma}2$, ${\beta}1$, ${\beta}3$, and ${\delta}1$ isozymes in normal human lung tissue and tyrosine-kinase-independent activation of phospholipase C-${\gamma}$ isozymes by tau protein and AHNAK. We had also found that the expression of AHNAK protein was markedly increased in various mstologic types of lung can∞r tissues as compared to the normallungs. However, the report concerning expression of various PLC isozymes in lung canærs and other lung diseases is lacking. Therefore, in this study we examined the expression of PLC isozymes in the paired surgical specimens taken from lung cancer patients. Methods : Surgically resected lung cancer tissue samples taken from thirty seven patients and their paired normal control lungs from the same patients, The expression of various PLC isozymes were studied. Western blot analysis of the tissue extracts for the PLC isozymes and immunohistochemistry was performed on typical samples for localization of the isozyme. Results : In 16 of 18 squamous cell carcinomas, the expression of PLC-${\gamma}1$ was increased. PLC-${\gamma}1$ was also found to be increased in all of 15 adenocarcinoma patients. In most of the non-small cell lung cancer tissues we had examined, expression of PLC-${\delta}1$ was decreased. However, the expression of PLC-${\delta}1$ was markedly increased in 3 adenocarcinomas and 3 squamous carcinomas. Although the numbers were small, in all 4 cases of small cell lung cancer tissues, the expression of PLC-${\delta}1$ was nearly absent. Conclusion : We found increased expression of PLC-${\gamma}1$ isozyme in lung cancer tissues. Results of this study, taken together with our earlier findings of AHNAK protein-a putative PLD-${\gamma}$, activator-over-expression, and the changes observed in PLC-${\delta}1$ in primary human lung cancers may provide a possible insight into the derranged calcium-inositol signaling pathways leading to the lung malignancies.

  • PDF

Expression of TIMP1, TIMP2 Genes by Ionizing Radiation (이온화 방사선에 의한 TIMP1, TIMP2 유전자 발현 측정)

  • Park Kun-Koo;Jin Jung Sun;Park Ki Yong;Lee Yun Hee;Kim Sang Yoon;Noh Young Ju;Ahn Seung Do;Kim Jong Hoon;Choi Eun Kyung;Chang Hyesook
    • Radiation Oncology Journal
    • /
    • v.19 no.2
    • /
    • pp.171-180
    • /
    • 2001
  • Purpose : Expression of TIMP, intrinsic inhibitor of MMP, is regulated by signal transduction in response to genotoxins and is likely to be an important step in metastasis, angiogenesis and wound healing after ionizing radiation. Therefore, we studied radiation mediated TIMP expression and its mechanism in head and neck cancer cell lines. Materials and Methods : Human head and neck cancer cell lines established at Asan Medical Center were used and radiosensitivity $(D_0)$, radiation cytotoxicity and metastatic potential were measured by clonogenic assay, n assay and invasion assay, respectively. The conditioned medium was prepared at 24 hours and 48 hours after 2 Gy and 10 Gy irradiation and expression of TIMP protein was measured by Elisa assay with specific antibodies against human TIMP. hTIMP1 promoter region was cloned and TIMP1 luciferase reporter vector was constructed. The reporter vector was transfected to AMC-HN-1 and -HN-9 cells with or without expression vector Ras, then the cells were exposed to radiation or PMA, PKC activator. EMSA was peformed with oligonucleotide (-59/-53 element and SP1) of TIMP1 promoter. Results : $D_0$ of HN-1, -2, -3, -5 and -9 cell lines were 1.55 Gy, 1.8 Gy, 1.5 Gt, 1.55 Gy and 2.45 Gy respectively. n assay confirmed cell viability, over $94\%$ at 24hrs, 48hrs after 2 Gy irradiation and over 73% after 10 Gy irradiation. Elisa assay confirmed that cells secreted TIMP1, 2 proteins continuously. After 2 Gy irradiation, TIMP2 secretion was decreased at 24hrs in HN-1 and HN-9 cell lines but after 10 Gy irradiation, it was increased in all cell lines. At 48hrs after irradiation, it was increased in HN-1 but decreased in HN-9 cells. But the change in TIMP secretion by RT was mild. The transcription of TIMP1 gene in HN-1 was induced by PMA but in HN-9 cell lines, it was suppressed. Wild type Ras induced the TIMP-1 transcription by 20 fold and 4 fold in HN-1 and HN-9 respectively. The binding activity to -59/-53, AP1 motif was increased by RT, but not to SP1 motif in both cell lines. Conclusions : We observed the difference of expression and activity of TIMPs between radiosensitive and radioresistant cell line and the different signal transduction pathway between in these cell lines may contribute the different radiosensitivity. Further research to investigate the radiation response and its signal pathway of TIMPs is needed.

  • PDF