• Title/Summary/Keyword: Protein Disulfide Isomerase

Search Result 59, Processing Time 0.054 seconds

Reductive Depolymerization of Bovine Thyroglobulin Multimers via Enzymatic Reduction of Protein Disulfide and Glutathiony­lated Mixed Disulfide Linkages

  • Liu Xi-Wen;Sok Dai-Eun
    • Archives of Pharmacal Research
    • /
    • v.28 no.9
    • /
    • pp.1065-1072
    • /
    • 2005
  • The nascent thyroglobulin (Tg) multimer molecule, which is generated during the initial fate of Tg in ER, undergoes the rapid reductive depolymerization. In an attempt to determine the depolymerization process, various types of Tg multimers, which were generated from deoxy­cholate-treated/reduced Tg, partially unfolded Tg or partially unfolded/reduced Tg, were subjected to various GSH (reduced glutathione) reducing systems using protein disulfide isomerase (PDI), glutathione reductase (GR), glutaredoxin or thioredoxin reductase. The Tg multimers generated from deoxycholate-treated/reduced Tg were depolymerized readily by the PDI/GSH system, which is consistent with the reductase activity of PDI. The PDI/GSH-induced depolymerization of the Tg multimers, which were generated from either partially unfolded Tg or partially unfolded/reduced Tg, required the simultaneous inclusion of glutathione reductase, which is capable of reducing glutathionylated mixed disulfide (PSSG). This suggests that PSSG was generated during the Tg multimerization stage or its depolymerization stage. In particular, the thioredoxin/thioredoxin reductase system or glutaredoxin system was also effective in depolymerizing the Tg multimers generated from the unfolded Tg. Overall, under the net GSH condition, the depolymerization of Tg multimers might be mediated by PDI, which is assisted by other reductive enzymes, and the mechanism for depolymerizing the Tg multimers differs according to the type of Tg multimer containing different degrees and types of disulfide linkages.

Enzymatic activity of Endoplasmic Reticulum Oxidoreductin 1 from Bombyx mori

  • Park, Kwanho;Yun, Eun-Young;Goo, Tae-Won
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.37 no.1
    • /
    • pp.15-20
    • /
    • 2018
  • Most proteins produced in the endoplasmic reticulum (ER) of eukaryotic cells fold via disulfide formation (oxidative folding). Oxidative folding is catalyzed by protein disulfide isomerase (PDI) and PDI-related ER protein thiol disulfide oxidoreductases (ER oxidoreductases). In yeast and mammals, ER oxidoreductin-1s (ERO1s) supply oxidizing equivalent to the active centers of PDI. We previously identified and characterized the ERO1 of Bombyx mori (bERO1) as a thioredoxin-like protein that shares primary sequence homology with other ERO1s. Here we compare the reactivation of inactivated rRNase and sRNase by bERO1, and show that bERO1 and bPDI cooperatively refold denatured RNase A. This is the first result suggesting that bERO1 plays an essential role in ER quality control through the combined activities of bERO1 and bPDI as a catalyst of protein folding in the ER and sustaining cellular redox homeostasis.

Effect of a Bombyx mori Protein Disulfide Isomerase on Production of Recombinant Antibacterial Peptides

  • Goo, Tae-Won;Kim, Seong-Wan;Choi, Kwang-Ho;Kim, Seong-Ryul;Kang, Seok-Woo;Park, Seung-Won;Yun, Eun-Young
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.26 no.2
    • /
    • pp.119-123
    • /
    • 2013
  • The insect baculovirus expression vector system (BEVS) is useful for producing biologically active recombinant proteins. However, the overexpression of heterologous proteins using this system often results in misfolded proteins and the formation of protein aggregates. To overcome this limitation, we developed a versatile baculovirus expression and secretion system using Bombyx mori protein disulfide isomerase (bPDI) as a fusion partner. bPDI gene fusion was found to improve the secretions and antibacterial activities of recombinant nuecin and enbocin proteins. Thus, we conclude that bPDI gene fusion is a useful addition to BEVS for the large-scale production of bioactive recombinant proteins.

Baculovirus Expression and Biochemical Characterization of the Bombyx mori Protein Disulfide Isomerase (bPDI)

  • Goo, Tae-Won;Yun, Eun-Young;Kim, Sung-Wan;Park, Kwang-Ho;Hwang, Jae-Sam;Kwon, O-Yu;Kang, Seok-Woo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.7 no.2
    • /
    • pp.127-131
    • /
    • 2003
  • Protein disulfide isomerase (PDI) found in the endoplasmic reticulum (ER) catalyzes disulfide bond exchange and assists in protein folding of newly synthesized proteins. PDI also functions as a molecular chaperone and has been found to be associated with proteins in the ER. In addition, PDI functions as a subunit of two more complex enzyme systems: the prolyl-4-hydroxylase and the triacylglycerol transfer proteins. A cDNA that encodes protein disulfide isomerase was previously isolated from Bombyx mori (bPDI), in which open reading frame of 494 amino acids contained two PDI-typical thioredoxin active site of WCGHCK and an ER retention signal of the KDEL motif at its C-terminal, and we report its functional characterization here. This putative bPDI cDNA is expressed in insect Sf9 cells as a recombinant proteins using baculovirus expression vector system. The bPDI recombinant proteins are successfully recognized by antirat PDI antibody, and shown to be biologically active in vitro by mediating the oxidative refolding of reduced and scrambled RNase. This suggests that bPDI may play an important role in protein folding mechanism of insects.

Role of Protein Disulfide Isomerase in Molecular Fate of Thyroglobulin and its Regulation by Endogenous Oxidants and Reductants

  • Liu, Xi-Wen;Sok, Dai-Eun
    • Archives of Pharmacal Research
    • /
    • v.25 no.4
    • /
    • pp.485-492
    • /
    • 2002
  • The molecular fate of thyroglobulin (Tg) is controlled by oligomerization, a means of storing Tg at high concentrations, and deoligomerization. The oligomerization of bovine Tg are intermolecular reactions that occur through oxidative processes, such as disulfide and dityrosine formation, as well as isopeptide formation; disulfide formation is primarily responsible for Tg oligomerization. Here, the protein disulfide isomerase (PDI) and/or peroxidase-induced oligomerization of unfolded thyroglobulins, which were prepared by treating bovine Tg with heat, urea or thiol/urea, was investigated using SDS-PAGE analyses. In addition, the enzymatic oligomerization was compared with non-enzymatic oligomerization. The thermally-induced oilgomerization of Tg, dependent on glutathione redox state, was affected by the ionic strength or the presence of a surfactant. Meanwhile, PDI-catalyzed oligomerization, time and pH-dependent, was the most remarkable with unfolded/reduced Tg, which was prepared from a treatment with urea/DTT, while the thermally-unfolded Tg was less sensitive. Similarly, the oligomerization of unfolded/reduced Tg was also mediated by peroxidase. However, PDI showed no remarkable effect on the peroxidase-mediated oligomerization of either the unfolded or unfolded/reduced Tg. Additionally, the reductive deoligomerization of oligomeric Tg was exerted by PDI in an excessively reducing state. Based on these results, it is proposed that PDI catalyzes the oligomerization of Tg through the disulfide linkage and its deoligomerization in the molecular fate, and this process may require a specific molecular form of Tg, optimally unfolded/reduced, in a proper redox state.

Assay of the Bombyx mori Recombinant Protein Disulfide Isomerase (bPDI) Acivity

  • Goo, Tae-Won;Yun, Eun-Young;Kim, Sung-Wan;Park, Kang-Ho;Hwang, Jae-Sam;Kang, Seok-Woo;Park, Soo-Jung;Kwon, O-Yu
    • Proceedings of the Korean Society of Sericultural Science Conference
    • /
    • 2003.04a
    • /
    • pp.45-45
    • /
    • 2003
  • Protein disulfide isomerase (PDO) is an essential protein which is localized to the endoplasmic reticulum (ER) of eukaryotic cells. It catalyses the formation and isomerization of disulfide bonds during the folding of secretory proteins. We have isolarted a cDNA encoding PDI from Bombyx mori (bPDI), in which an open reading frame of 494 mino acid (55.6kDa) is shown. (omitted)

  • PDF