• Title/Summary/Keyword: Protein Denaturation

Search Result 163, Processing Time 0.017 seconds

Anti-calcification Effects in Decellularized and Variously Fixed Bovine Pericardium (소심낭 절편의 무세포화와 알코올 전처치를 포함한 여러 고정 처리법 시행 후 석회화 경감 효과 관찰 연구)

  • Hwang, Seong-Wook;Kim, Yong-Jin;Kim, Soo-Hwan;Choi, Seung-Hwa
    • Journal of Chest Surgery
    • /
    • v.43 no.3
    • /
    • pp.235-245
    • /
    • 2010
  • Background: Our goal was to evaluate anti-calcification effects of decellularization and diverse fixing methods including preincubation of the bovine pericardium with ethanol. We also assessed changes in mechanical properties. Material and Method: Harvested bovine pericardium was decellularized with 0.25% sodim dodecysulfate and then treated with 5 methods of fixation: (1) 0.5% glutaraldehyde (GA) for 14 days, (2) 0.5% GA for 5 days, 2% GA for 2 days and 0.25% GA for 7 days, (3) 0.5% GA for 5 days, 2% GA for 2 days, 0.25% GA for 7 days, and then 70% ethanol for 2 days, (4) 0.5% GA for 5 days, a mixture of 2% GA and 70% ethanol for 2 days, and 0.25% GA for 7 days, (5) 0.5% GA for 5 days, a mixture of 2% GA, 65% ethanol, and 5% octanediol for 2 days and then 0.25% GA for 7 days. All treated bovine pericardia were tested for histological variables, lipid content, and mechanical properties including tensile strength and thermal stability. A total 10 kinds of differently treated bovine pericardia were implanted into rat subdermis and harvested 8 weeks later. Harvested pericardia were evaluated for calcium content. Result: No protein denaturation was observed microscopically after decellularization. There was a 32% mean decrease in tensile strength index after decellularization in the bovine pericardium group fixed. Octanediol preincubation attenuated the decrease in tensile strength and maintained thermal stability. TG and cholesterol were not affected by decellularization but were decreased by organic solvent. Calcium content was decreased after decellularization, and organic solvent preincubation decreased calcification in the non-decellularized bovine pericardium group. Conclusion: Decellularization and organic solvent preincubation have anti-calcification effects but decellularization may cause mechanical instability. A method of decellularization and fixation that does not cause damage to matrices will be needed for evaluation of the next step in using tissue-engineering for replacement of cardiac valves.

Alcohol Fermentation at High Temperature and the Strain-specific Characteristics Required to Endow the Thermotolerance of Sacchromyces cerevisiae KNU5377

  • Paik, Sang-Kyoo;Park, In-Su;Kim, Il-Sup;Kang, Kyung-Hee;Yu, Choon-Bal;Rhee, In-Koo;Jin, In-Gnyol
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2005.06a
    • /
    • pp.154-164
    • /
    • 2005
  • Saccharomyces cerevisiae KNU5377 is a thermotolerant strain, which can ferment ethanol from wasted papers and starch at 40$^{\circ}C$ with the almost same rate as at 30$^{\circ}C$. This strain showed alcohol fermentation ability to convert wasted papers 200 g (w/v) to ethanol 8.4% (v/v) at 40$^{\circ}C$, meaning that 8.4% ethanol is acceptable enough to ferment in the industrial economy. As well, all kinds of starch that are using in the industry were converted into ethanol at 40$^{\circ}C$ with the almost same rate as at 30$^{\circ}C$. Hyperthermic cell killing kinetics and differential scanning calorimetry (DSC) revealed that exponentially growing cells of this yeast strain KNU5377 were more thermotolerant than those of S. cerevisiae ATCC24858 used as a control. This intrinsic thermotolernace did not result from the stability of entire cellular components but possibly from that of a particular target. Heat shock induced similar results in whole cell DSC profiles of both strains and the accumulation of trehalose in the cells of both strains, but the trehalose contents in the strain KNU5377 were 2.6 fold higher than that in the control strain. On the contrary to the trehalose level, the neutral trehalase activity in the KNU5377 cells was not changed after the heat shock. This result made a conclusion that though the trehalose may stabilize cellular components, the surplus of trehalose in KNU5377 strain was not essential for stabilization of whole cellular components. A constitutively thermotolerant yeast, S. cerevisiae KNU5377, was compared with a relatively thermosensitive control, S. cerevisiae ATCC24858, by assaying the fluidity and proton ATPase on the plasma membrane. Anisotropic values (r) of both strains were slightly increased by elevating the incubation temperatures from 25$^{\circ}C$ to 37$^{\circ}C$ when they were aerobically cultured for 12 hours in the YPD media, implying the membrane fluidity was decreased. While the temperature was elevated up to 40$^{\circ}C$, the fluidity was not changed in the KNU5377 cell, but rather increased in the control. This result implies that the plasma membrane of the KNU5377 cell can be characterized into the more stabilized state than control. Besides, heat shock decreased the fluidity in the control strain, but not in the KNU5377 strain. This means also there's a stabilization of the plasma membrane in the KNU5377 cell. Furthermore, the proton ATPase assay indicated the KNU5377 cell kept a relatively more stabilized glucose metabolism at high temperature than the control cell. Therefore, the results were concluded that the stabilization of plasma membrane and growth at high temperature for the KNU5377 cell. Genome wide transcription analysis showed that the heat shock responses were very complex and combinatory in the KNU5377 cell. Induced by the heat shock, a number of genes were related with the ubiquitin mediated proteolysis, metallothionein (prevent ROS production from copper), hsp27 (88-fold induced remarkably, preventing the protein aggregation and denaturation), oxidative stress response (to remove the hydrogen peroxide), and etc.

  • PDF

The embryological studies on the interspecific hybrid of ginseng plant (Panax ginseng x P. Quiuquefolium) with special references to the seed abortion (인삼의 종간잡종 Panax ginseng x P Quinquefoilium의 발생학적 연구 특히 결실불능의 원인에 관하여)

  • Jong-Kyu Hwang
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.5 no.1
    • /
    • pp.69-86
    • /
    • 1969
  • On the growing of the interspecific hybrid ginseng plant, the phenomena of hybrid vigoures are observed in the root, stem, and leaf, but it can not produce seeds favorably since the ovary is abortive in most cases in interspecific hybrid plants. The present investigation was undertaken in an attempt to elucidate the embryological dses of the seed failure in the interspecific hybrid of ginseng (Panax Ginseng ${\times}$ P. Quinque folium). And the results obtained may be summarized as follows. 1). The vegetative growth of the interspecific hybrid ginseng plant is normal or rather vigorous, but the generative growth is extremely obstructed. 2). Even though the generative growth is interrupted the normal development of ovary tissue of flower can be shown until the stage prior to meiosis. 3). The division of the male gameto-genetic cell and the female gameto-genetic cell are exceedingly irregular and some of them are constricted prior to meiosis. 4). At meiosis in the microspore mother cell of the interspecific hybrid, abnormal division is observed in that the univalent chromosome and chromosome bridge occure. And in most cases, metaphasic configuration is principally presented as 23 II+2I, though rarely 22II+4I is also found. 5). Through the process of microspore and pollen formation of F1, the various developmental phases occur even in an anther loclus. 6). Macro, micro and empty pollen grains occur and the functional pollen is very rare. 7). After the megaspore mother cell stage, the rate of ovule development is, on the whole, delayed but the ovary wall enlargement is nearly normal. 8). Degenerating phenomena of ovules occur from the megaspore mother cell stage to 8-nucleate embryo sac stage, and their beginning time of constricting shape is variously different. 9). The megaspore arrangement in the parent is principally of the linear type, though rarely the intermediate type is also observed, whereas various types, viz, linear, intermediate, Tshape, and I shape can be observed in hybrid. 10). After meiosis, three or five megaspore are some times counted. 11). Charazal end megaspore is generally functional in the parents, whereas, in F1, very rarely one of the center megaspores (the second of the third megaspore) grows as an embryo sac mother cell. 12). In accordance with the extent of irregularity or abnormality in meiosis, division of embryo sac nuclei and embryo sac formation cause more nucellus tissue to remain within th, embryo sac. 13). Even if one reached the stage of embryo sac formation, the embryo sac nuclei are always precarious and they can not be disposed to theil proper, respective position. 14). Within the embryo sac, which is lacking the endospermcell, the 4-celled proembryo, linear arrangement, is observed. 15). Through the above respects, the cause of sterile or seed failure of interspecific hybrid would be presumably as follows, By interspecific crossing gene reassortments takes place and the gene system influences the metabolism by the interference of certain enzyme as media. In the F1 plant, the quantity and quality of chemicals produced by the enzyme system and reaction system are entirely different from the case of the parents. Generally, in order to grow, form, and develop naw parts it is necessary to change the materials and energy with reasonable balance, whereas in the F1 plant the metabolic process becomes abnormal or irregular because of the breakdown of the balancing. Thus the changing of the gene-reaction system causes the alteration of the environmental condition of the gameto-genetic cells in the anther and ovule; the produced chemicals cause changes of oxidatio-reduction potential, PH value, protein denaturation and the polarity, etc. Then, the abnormal tissue growing in the ovule and emdryo sac, inhibition of normal development and storage of some chemicals, especially inhibitor, finally lead to sterility or seed failure. Inconclusion, we may presume that the first cause of sterile or seed abortion in interspecific hybrids is the gene reassortment, and the second is the irregularity of the metabolic system, storage of chemicals, especially inhibitor, the growth of abnormal tissue and the change of the polarity etc, and they finally lead to sexual defect, sterility and seed failure.

  • PDF