• Title/Summary/Keyword: Protein A

Search Result 29,857, Processing Time 0.04 seconds

Classifying Biomedical Literature Providing Protein Function Evidence

  • Lim, Joon-Ho;Lee, Kyu-Chul
    • ETRI Journal
    • /
    • v.37 no.4
    • /
    • pp.813-823
    • /
    • 2015
  • Because protein is a primary element responsible for biological or biochemical roles in living bodies, protein function is the core and basis information for biomedical studies. However, recent advances in bio technologies have created an explosive increase in the amount of published literature; therefore, biomedical researchers have a hard time finding needed protein function information. In this paper, a classification system for biomedical literature providing protein function evidence is proposed. Note that, despite our best efforts, we have been unable to find previous studies on the proposed issue. To classify papers based on protein function evidence, we should consider whether the main claim of a paper is to assert a protein function. We, therefore, propose two novel features - protein and assertion. Our experimental results show a classification performance with 71.89% precision, 90.0% recall, and a 79.94% F-measure. In addition, to verify the usefulness of the proposed classification system, two case study applications are investigated - information retrieval for protein function and automatic summarization for protein function text. It is shown that the proposed classification system can be successfully applied to these applications.

Inhibitory Effect of Lipid Bilayer Membrane on Protein Phosphatase 2A (Protein Phosphatase 2A의 활성화에 미치는 Lipid Bilayer Membrane의 저해 효과)

  • 남기열
    • KSBB Journal
    • /
    • v.7 no.4
    • /
    • pp.302-307
    • /
    • 1992
  • Protein phosphatase 2A was obtained from a cytosolic fraction of bovine brain homogenate. The phosphatase activity using phosphorylated histone Hl as substrate was suppressed in the presence of liposomes composed of dipalmitoylphosphatidylcholine(DPPC) or the mixture of phosphatidylserine and DPPC. The binding of protein phosphatase to liposome was indicated by the facts that the phosphatase activity of the supernatant of protein phosphatase/multilayer vesicle mixture was decreased with increasing amount of liposome, and that [$^{125}I$]-labeled protein phosphatase was coeluted with liposome. However, the affinity of the protein for phospholipid membrane was not so high. On the other hand, okadaic acid and liposome reduced the phosphatase activity synergistically, which means that okadaic acid binds neither to lipid membrane nor to the membrane-associated phosphatase, The inhibitory effect of liposome was, therefore, ascribed to association of the protein phosphatase 2A with the lipid bilayer membrane.

  • PDF

Development and Application of Protein-Protein interaction Prediction System, PreDIN (Prediction-oriented Database of Interaction Network)

  • 서정근
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2002.06a
    • /
    • pp.5-23
    • /
    • 2002
  • Motivation: Protein-protein interaction plays a critical role in the biological processes. The identification of interacting proteins by bioinformatical methods can provide new lead In the functional studies of uncharacterized proteins without performing extensive experiments. Results: Protein-protein interactions are predicted by a computational algorithm based on the weighted scoring system for domain interactions between interacting protein pairs. Here we propose potential interaction domain (PID) pairs can be extracted from a data set of experimentally identified interacting protein pairs. where one protein contains a domain and its interacting protein contains the other. Every combinations of PID are summarized in a matrix table termed the PID matrix, and this matrix has proposed to be used for prediction of interactions. The database of interacting proteins (DIP) has used as a source of interacting protein pairs and InterPro, an integrated database of protein families, domains and functional sites, has used for defining domains in interacting pairs. A statistical scoring system. named "PID matrix score" has designed and applied as a measure of interaction probability between domains. Cross-validation has been performed with subsets of DIP data to evaluate the prediction accuracy of PID matrix. The prediction system gives about 50% of sensitivity and 98% of specificity, Based on the PID matrix, we develop a system providing several interaction information-finding services in the Internet. The system, named PreDIN (Prediction-oriented Database of Interaction Network) provides interacting domain finding services and interacting protein finding services. It is demonstrated that mapping of the genome-wide interaction network can be achieved by using the PreDIN system. This system can be also used as a new tool for functional prediction of unknown proteins.

  • PDF

Optimum Dietary Protein Level of Ayu (Plecoglossus altivelis) (은어 사료의 적정 단백질 함량)

  • 이상민;김경덕
    • Journal of Aquaculture
    • /
    • v.12 no.2
    • /
    • pp.145-153
    • /
    • 1999
  • This study was conducted to determine the protein requirement of ayu (Plecoglossus altivelis). Two replicate groups of fish initially averaging 6.6 g were fed the five isocaloric diets containing different protein level from 29% to 57% in a flow-through freshwater system for 25 days. White fish meal was used as a sole protein source. Weight gain and feed efficiency of fish increased significantly with dietary protein level up to 43% (P<0.05) with no additional response above this level. Protein and lipid retention, moisture, protein and lipid contents of body were not affected by dietary protein levels (P>0.05). Daily protein intake increased significantly with dietary protein level, whereas protein efficiency ratio of fish fed the 57% dietary protein decreased (P<0.05). The data obtained in this study indicate that a 43% dietary protein level could be recommended for the optimum growth of ayu.

  • PDF

Value and utilization of rice protein (쌀단백질의 가치와 이용방법)

  • Jung, Kwangho
    • Food Science and Industry
    • /
    • v.52 no.1
    • /
    • pp.60-67
    • /
    • 2019
  • Protein is a major nutrient of food and has long been studied for nutritional and utility value. Among them, rice protein is attracting attention because of its hypoallergenic characteristics and nutritional value. Rice proteins are divided into endosperm protein and bran protein depending on their location. The two proteins differ in their nutritional characteristics and applications. The endosperm protein is an insoluble protein and has an advantage of digestion and absorption. Rice bran protein dissolves well in water. Its amino acid value is high enough to be comparable to that of soy protein, and it has strong antioxidant ability. Rice protein is a healthy vegetable protein because of its health and hypoallergenic properties. It has been widely used in children's or patients' food, and recently for muscle supplement and health food. Rice protein is considered to be a very effective and useful material as it has been discovered so far.

Monitoring Nutritional Status of Dairy Cows in Taiwan Using Milk Protein and Milk Urea Nitrogen

  • Hwang, Sen-Yuan;Lee, Mei-Ju;Chiou, Peter Wen-Shyg
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.12
    • /
    • pp.1667-1673
    • /
    • 2000
  • The climate and marketing system of raw milk in Taiwan create problems in balance feeding of protein and energy in lactating cows in Taiwan. Level of urea nitrogen both in bulk milk and serum reflects ruminal protein degradation and post-ruminal protein provision, whereas milk protein concentration responds to dietary energy intake and bacterial protein production in the rumen. Establishment of a range of reference standards in milk protein and urea nitrogen levels can be applied as a noninvasive economical feeding guide to monitor the balance of protein and energy intake. Standard reference levels of 3.0% milk protein and 11-17 mg/dL milk urea nitrogen (MUN) were established. Level of milk protein below 3.0% is regarded as indicating inadequate dietary energy whereas MUN below or above the range is regarded as a deficiency or surplus in dietary protein. Results from analysis of bulk a milk samples collected from 174 dairy herds over Taiwan showed that only one quarter (25.29%) of the herds received a balanced intake of protein and energy, 33.33% adequate protein with energy inadequate, 22.99% herds in protein surplus with energy inadequate, 10.35% herds in protein surplus with energy adequate, 4.6% protein deficiency with energy adequate, and 3.45% herds with both protein and energy inadequate. Energy inadequate herds accounted for 60% of the total dairy herds in Taiwan with 56% adequate, 38% surplus and 6% inadequate in protein. In comparing milk sampled from bulk milk on different seasons from Lee-Kang area in the southern Taiwan, the concentrations of milk fat and milk protein were significantly higher in the cool season (February) than in the warm season (August) (p<0.05), whereas the urea nitrogen in the milk was significantly lower in the cool season than in the warm season (p<0.05). This indicated that lactating cows had excess protein and/or inadequate energy intake in the warm season in this area. It appears that the major problem feeding in lactating cows is energy intake shortage, especially during the warm season in Taiwan.

Binding of IciA protein to the dnaA promoter region

  • Kim, Hakjung;Hwang, Deog-Su
    • Journal of Microbiology
    • /
    • v.33 no.3
    • /
    • pp.191-195
    • /
    • 1995
  • IciA protein has been shown as an inhibitor for the initiation of E. coli chromosomal DNA replication at oriC. IciA protein binds the AT-rich region in oriC and then blocks the initiation of chromosomal DNA replication. Two binding sites for IciA protein were identified in dnaA gene, encoding the initiator for the E. coli chromosomal replication, promoter region by gel-shift assay and DNase I footprinting, One, named as IciA site I, is located upstream of the dnaA promoter 1P. The other, named as IciA site II, is located downstream of the dnaA promoter 2P. The sequence comparison of the regions protected from the DNase I cleavage did not result in a clear consensus sequence for the binding of IciA protein, suggesting that IciA protein may be a member of multimeric complex dsDNA binding proteins. This study provided information about the binding mode of IciA protein. Even though the IciA site II and IciA binding site in oriC seem to be composed of two IciA binding units, one binding unit is likely enough to cause the binding of IciA protein to the IciA site I. The binding of IciA protein to the dna4 promoter implies that IciA protein may involve not only the control of the initiation of chromosomal DNA replication but also the control of the dna4 gene expression.

  • PDF

Pre-sleep casein protein ingestion: new paradigm in post-exercise recovery nutrition

  • Kim, Jooyoung
    • Korean Journal of Exercise Nutrition
    • /
    • v.24 no.2
    • /
    • pp.6-10
    • /
    • 2020
  • [Purpose] Milk is a commonly ingested post-exercise recovery protein source. Casein protein, found in milk, is characterized by its slow digestion and absorption. Recently, several studies have been conducted with a focus on how pre-sleep casein protein intake could affect post-exercise recovery but our knowledge of the subject remains limited. This review aimed at presenting and discussing how pre-sleep casein protein ingestion affects post-exercise recovery and the details of its potential effector mechanisms. [Methods] We systematically reviewed the topics of 1) casein nutritional characteristics, 2) pre-sleep casein protein effects on post-exercise recovery, and 3) potential effector mechanisms of pre-sleep casein protein on post-exercise recovery, based on the currently available published studies on pre-sleep casein protein ingestion. [Results] Studies have shown that pre-sleep casein protein ingestion (timing: 30 minutes before sleep, amount of casein protein ingested: 40-48 g) could help post-exercise recovery and positively affect acute protein metabolism and exercise performance. In addition, studies have suggested that repeated pre-sleep casein protein ingestion for post-exercise recovery over a long period might also result in chronic effects that optimize intramuscular physiological adaptation (muscle strength and muscle hypertrophy). The potential mechanisms of pre-sleep casein protein ingestion that contribute to these effects include the following: 1) significantly increasing plasma amino acid availability during sleep, thereby increasing protein synthesis, inhibiting protein breakdown, and achieving a positive protein balance; and 2) weakening exercise-induced muscle damage or inflammatory responses, causing reduced muscle soreness. Future studies should focus on completely elucidating these potential mechanisms. [Conclusion] In conclusion, post-exercise ingestion of at least 40 g of casein protein, approximately 30 minutes before sleep and after a bout of resistance exercise in the evening, might be an effective nutritional intervention to facilitate muscle recovery.

The Bacteriophage λ DNA Replication Protein P Inhibits the oriC DNA- and ATP-binding Functions of the DNA Replication Initiator Protein DnaA of Escherichia coli

  • Datta, Indrani;Sau, Subrata;Sil, Alok Kumar;Mandal, Mitai C.
    • BMB Reports
    • /
    • v.38 no.1
    • /
    • pp.97-103
    • /
    • 2005
  • Under the condition of expression of $\lambda$ P protein at lethal level, the oriC DNA-binding activity is significantly affected in wild-type E. coli but not in the rpl mutant. In purified system, the $\lambda$ P protein inhibits the binding of both oriC DNA and ATP to the wild-type DnaA protein but not to the rpl DnaA protein. We conclude that the $\lambda$ P protein inhibits the binding of oriC DNA and ATP to the wild-type DnaA protein, which causes the inhibition of host DNA synthesis initiation that ultimately leads to bacterial death. A possible beneficial effect of this interaction of $\lambda$ P protein with E. coli DNA initiator protein DnaA for phage DNA replication has been proposed.

Nanomechanical Protein Detectors Using Electrothermal Nano-gap Actuators (나노간극 구동기를 이용한 나노기계적 단백질 검출기)

  • 이원철;조영호
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.12
    • /
    • pp.1997-2003
    • /
    • 2004
  • This paper presents a new method and an associated device, capable of detecting protein presence and size from the shift of the mechanical stiffness changing points due to the presence and size of proteins in a nano-gap actuator. Compared to the conventional resonant detection method, the present nanomechanical stiffness detection method shows higher precision for protein detection. The present method also offers simple and inexpensive protein detection devices by removing labeling process and optical components. We design and fabricate the nanomechanical protein detector using an electrothermal actuator with a nano-gap. In the experimental study, we measure the stiffness changing points and their coordinate shift from the devices with and without target proteins. The fabricated device detects the protein presence and the protein size of 14.0$\pm$7.4nm based on the coordinate shift of stiffness changing points. We experimentally verify the protein presence and size detection capability of the nanomechanical protein detector for applications to high-precision biomolecule detection.