• Title/Summary/Keyword: Protective coatings

Search Result 147, Processing Time 0.022 seconds

Effect of Electrolyte Concentration on Water Permeation in Protective Coatings (방식도막에 있어서 물의 침투에 대한 전해질 용액의 영향)

  • 박진환
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.4
    • /
    • pp.206-212
    • /
    • 1998
  • The water permeation in protective coatings, which may greatly influence the corrosion protective property of these coatings, was studied using the electrochemical impedance spectroscopy technique. During the absorption of water in protective coatings immersed in electrolyte solution, the change of coating capacitance with concentration of electrolyte was determined from impedance measurements. When water absorption or desorption of coatings occured by exposing the coatings to electrolyte solutions of different concentration, increase in impedance caused by desorption of water was found to be higher in the case of thicker film. The amount of water absorbed in coatings changed with concentration of electrolyte. The water taken up in coatings from the solution of lower electrolyte concentration was deserted by contact with the solution of higher concentration. The uptake of water in protective coatings varied depending on the type of coating ingredient especially binder.

  • PDF

Degradation of Coatings under Atmospheric Tropical Conditions

  • To, Thi Xuan Hang;Pham, Gia Vu;Vu, Ke Oanh;Trinh, Anh Truc;Kodama, Toshiaki;Tanabe, Hiroyuki;Taki, Tohru;Nagai, Masanori
    • Corrosion Science and Technology
    • /
    • v.2 no.5
    • /
    • pp.207-211
    • /
    • 2003
  • The weather resistance of five coatings systems based on alkyd, chlorinated rubber, epoxy, polyurethane and fluoropolymer were studied by natural exposure test and accelerated test. The coatings were exposed at Hanoi station with urban industry atmosphere and at Baichay station with marine atmosphere. The degradation of coatings was evaluated by gloss measurement and surface analysis by scanning electronic microscopy. The results obtained show that among coatings tested the gloss of polyurethane and fluoropolymer coatings remained highly and those of alkyd, chlorinated rubber and epoxy coatings were very low after two years of atmospheric exposure. Under accelerating conditions the gloss of fluoropolymer coatings remained highly after 80 cycles of testing. By comparison with accelerating test in UV-condensation chamber the conditions at atmospheric stations are more aggressive.

Improvement of Protective Properties of Top Coatings Applied on Zinc-Rich Primer by 3-Aminopropyl-Triethoxysilan and 2-(Benzothialylthio) Succinic acid

  • Trinh, Anh Truc;To, Thi Xuan Hang;Vu, Ke Oanh;Nguyen, Tuan Dung
    • Corrosion Science and Technology
    • /
    • v.3 no.3
    • /
    • pp.107-111
    • /
    • 2004
  • Corrosion resistance of coating system consisting of zinc-rich primer (ZRP) and topcoat based on polyurethane resin with the presence of 3-aminopropyl-triethoxysilan (APS) and 2-(benzothialylthio) succinic acid (BSA) was studied by electrochemical impedance and wet adhesion. The interface metal/primer/topcoat was analyzed by scanning electronic microscopy. It was found that the presence of APS and BSA improved adhesion and barrier property of the topcoats.

Corrosion of AI-Fe Coatings for Wet-Seal Area in Molten Carbonate Fuel Cells

  • Jun, JaeHo;Jun, JoongHwan;Kim, KyooYoung
    • Corrosion Science and Technology
    • /
    • v.3 no.3
    • /
    • pp.98-101
    • /
    • 2004
  • The corrosion behavior of Al-Fe coatings was studied in the wet-seal atmosphere of molten carbonate fuel cells (MCFC). Fe-8Al, Fe-16Al, Fe-25Al, Fe-36Al, and Fe-70Al (in at.%) specimens were tested in Li/K carbonate at $650^{\circ}C$ by a single cell test and an immersion test. In general, the corrosion resistance of the Al-Fe coatings was enhanced due to the formation of a protective $LiAlO_2$ layer. However, when the Al-Fe coatings didn't have sufficient content of aluminum enough for maintaining the protective layer, the corrosion resistance of the Al-Fe coatings was severely degraded by the growth of non-protective scales like $LiAlO_2$. The test results revealed that the aluminum contents in the coatings should be higher than 25 at.% in order to form and maintain the protective $LiAlO_2$ layers.

A study on the water absorption in protective coatings (방식도막에 있어서 물의 흡수에 관한 연구)

  • Park Jin-Hwan
    • Journal of the Korean Electrochemical Society
    • /
    • v.1 no.1
    • /
    • pp.55-59
    • /
    • 1998
  • The water absorption in protective coatings, which may greatly influence the durability of these coatings, was studied using quartz crystal microbalance and electrochemical impedance technique. The water absorption in protective coatings and the change of coating capacitance with concentration of electrolyte were measured. The water absorption in coatings seems to be driven by osmotic pressure, and larger amount of water was absorbed in thinner coatings at initial stage of absorption. The amount of water absorbed in coatings changed with the type and crosslinking density of resin used in coating formulation. When water absorption and desorption of coating occured by exposing the coatings to electrolyte solutions of different concentration, increase in impedance caused by desorption of water was found to be higher in the case of thinner film.

Protective Coatings for Accident Tolerant Fuel Claddings - A Review

  • Rofida Hamad Khlifa;Nicolay N. Nikitenkov
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.1
    • /
    • pp.115-147
    • /
    • 2023
  • The Fukushima accident in 2011 revealed some major flaws in traditional nuclear fuel materials under accidental conditions. Thus, the focus of research has shifted toward "accident tolerant fuel" (ATF). The aim of this approach is to develop fuel material solutions that lead to improved reactor safety. The application of protective coatings on the surface of nuclear fuel cladding has been proposed as a near-term solution within the ATF framework. Many coating materials are being developed and evaluated. In this article, an overview of different zirconium-based alloys currently in use in the nuclear industry is provided, and their performances in normal and accidental conditions are discussed. Coating materials proposed by different institutions and organizations, their performances under different conditions simulating nuclear reactor environments are reviewed. The strengths and weaknesses of these coatings are highlighted, and the challenges addressed by different studies are summarized, providing a basis for future research. Finally, technologies and methods used to synthesize thin-film coatings are outlined.

Evaluation of Performance of Protective Surface Coating for Concrete

  • Ahn, Tae Song;Cheong, Hai Moon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.1061-1066
    • /
    • 2003
  • Chloride penetration into concrete is the main cause of the steel corrosion in concrete structures exposed to chloride-rich environments. Protective surface coatings are increasingly being applied to concrete structures to reduce chloride penetration. In this study, the performance of various surface coatings was evaluated. Most coatings showed good results for the various tests of the performance evaluation. Surface coatings can delay deterioration such as chloride-induced reinforcing bar corrosion effectively.

  • PDF

Evaluation of Corrosion Protection for Epoxy and Urethane Coating by EIS under Various Cyclic Corrosion Tests

  • Hyun, Jonghun;Shon, Minyoung
    • Corrosion Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.95-100
    • /
    • 2011
  • Protective coatings play an important role in the protection of metallic structures against corrosive environment. The main function of anticorrosive coating is to prevent the materials from corrosive agents, such as water, oxygen and ions. In the study, the corrosion protection properties of urethane and epoxy coating systems were evaluated using EIS methods exposed to the corrosion acceleration test such as Norsok M501, Prohesion and hygrothermal cyclic test. AFM analysis of the coating systems was carried out to monitor the change of roughness of coatings. Urethane coating system was more stable than the epoxy coating under given cyclic conditions. Water uptake into the urethane coatings was less than that into the epoxy coating. The urethane coating system showed better corrosion protection than epoxy coating system based on the changes of the impedance modulus at low frequency region with exposure time. Consequently, the corrosion protection properties of the epoxy and urethane coatings was well correspond with their surface roughness changes and water uptakes.

Preparation and Characteristics of Acrylic Removable Protective Coatings (박리형 아크릴 보호코팅제의 제조 및 특성)

  • Hahm, Hyun-Sik;Park, Ji-Young;Hwang, Jae-Young;Ahn, Sung-Hwan;Park, Hong-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.332-338
    • /
    • 2005
  • This study was conducted to prepare acrylic removable protective coatings by emulsion polymerization. Monomers used were n-butyl acrylate, acrylonitrile, butyl methacrylate. Emulsifiers used were sodium lauryl sulfate and polyoxyethylene lauryl ether, which are an anionic emulsifier and a nonionic emulsifier respectively. Potassium persulfate was used as an initiator and polyvinyl alcohol was used as a stabilizer. Emulsion polymerization was carried out in a semi-batch reactor at $70^{\circ}C$ and agitation speed was 200 rpm. Tensile strength, extension, peel strength, viscosity, and solid contents of the synthesized coatings were examined. The coatings prepared with BA:AN = 60:20 (in weight ratio) satisfied the standard for automobile in terms of extension and peel strength. When the concentration of BMA was in a range of $18{\sim}23$ wt%, the prepared coatings satisfied the standard for automobile in terms of peel strength and water resistance.

Testing Investigation of Protective Coatings for Downhole Oil Tube

  • Zhang, Liping;Zhang, Qibin;Zhang, Yanjun;Xie, Beibei;Zhang, Yingying
    • Corrosion Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.13-15
    • /
    • 2008
  • Aiming at the corrosion circumstances and corrosion prevention needs of downhole oil tubes, series protective coatings for downhole oil tubes have been developed in the authors' laboratory, including a baked type coating YG-01 and an air curing type coating YG-03, etc. The performance investigation of the coatings has been done for testing their corrosion resistance, mainly including salt fog test, immersion test in oil-field waste water and various acid solutions, high temperature and high pressure test in alkali solution or $H_2S/CO_2$ environment, as well as some other performances. The investigation results show that oil tube anti-corrosion coatings developed here can endure over 4000 hrs salt fog test, over 1000 hrs immersion in various acid solutions at room temperature and in boiling oil-field waste water. In addition, the coatings can keep intact after experiencing test in alkali solution under 70 MPa pressure at $150^{\circ}C$ for 24 hrs, and in simulative sour gas environment under the total pressure of 32 MPa ($P_{H_{2}S}=3.2MPa$, $P_{CO_{2}}=3.2MPa$) at $90^{\circ}C$ for 168 hrs, which show that the coatings can be used for corrosion prevention in downhole environments with specific high temperature and high pressure, such as sour gas wells. The other testing results show the oil tube protective coatings have excellent comprehensive performance.