• Title/Summary/Keyword: Protection performance

Search Result 2,157, Processing Time 0.037 seconds

Performance Assessment Model for Fire Safety Protection of Office Building (사무소 건축물의 화재안전 성능 평가모델)

  • Yang, Eun-Bum;Hwang, Young-Sam;Lee, Chan-Sik
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.2
    • /
    • pp.69-74
    • /
    • 2004
  • This study is to suggest a performance assessment model for fire safety protection of office building 34 asessment elements were chosen by interviewing with experts, reviewing several codes and existing relevant models, assessment elements included in this model are comprised of five categories which are 'performace of protected area', 'performance of fire partition', 'safety performance of fire escape', 'performace of smoke control system' and 'performace of fire fighting equipment'. The weight of each element was computed by systematic approach like an AHP (analytical hierarchy process), which was conducted by experts who work in the field of fire protection. This model would be utilized as a part of assessment model for the overall performace of domestic office building.

A Study on the Injury Criteria of the Occupant Protection Performance of Crush Cushions (충격흡수시설의 탑승자보호 성능평가 기준에 관한 연구)

  • Lim, Jae-Moon;Jung, Geun-Seup
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.2
    • /
    • pp.49-57
    • /
    • 2008
  • The performance of crash cushion systems is certified through the full scale crash tests by the standard for installation and maintenance guidelines for roadside safety appurtenance. The impact severities of impacting vehicles in collision with crash cushion systems are rated by indices THIV and PHD. Crash test results are considered to study the performance of three crash cushion systems. In case of the frontal impact or the offset frontal impact, the results show that THIV values of three systems are very close to the threshold limit for the occupant protection. Also, the results show that PHD would be improper for the occupant protection performance index. In order to improve the occupant protection performance of crash cushions, ASI needs to be included in the impact severity index.

Characteristics of Temperature Distribution of Axially Loaded CFT Column with Fire Protection (축하중을 받는 내화피복 CFT기둥의 온도분포 특성)

  • Kim, Hae-Soo;Yoon, Sung-Kee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.4
    • /
    • pp.78-85
    • /
    • 2010
  • When the fire occur, concrete filled steel tube(CFT) columns expected to form a much distinction in a fire resistance performance according to a kind of fire protection because the steel surface is directly exposed to high temperature. In this study, an experiment by three factors which were kind of fire protection, thickness of protection and time was performed to get the characteristics of temperature distribution types of CFT column with fire protection. As the result of this study, on a basis of heating temperature, spray protection was the most superior in a fire resistance performance, fireproof paint was next, and without fire protection was most inferior. In a heating time-location relationship, the temperature increased slowly on the surface of the concrete, but the temperature increased sharply on the surface of the steel.

APPLICATION OF PERFORMANCED BASED DESIGN IN FIRE PROTECTION ENGINEERING

  • Cha, David S.
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.423-438
    • /
    • 1997
  • Today's building and fire prevention codes are mostly prescriptive. Prescriptive codes are based on major fires in earlier years that created a need for specific building provision. These codes provide a minimum level of safety. As the general and engineering uses of computers have increased over the years, so has use of computers in the fire protection engineering. This has allowed fire protection engineers to develop alternative approaches to solve today's fire protection problems or to evaluate the performance of a specific fire safety goal. A performance based approach to building and fire codes involves the following: 1) identifying specific goals, such as, safely getting out of the building in 10 minutes, 2) obtain conceptual approval from authorities, 3) define performance level, 4) develop design solutions and identify tools such as, fire tests, models, or methods, to demonstrate that a design will meet the fire protection objective 5) test solutions, 6) present test method and results to the authorities. Some people in the fire protection community consider this to be nothing more than an intellectual exercise, while the others view it as a way to reduce expenses on large project$^4$ Others in fire protection community view this as a way to refine the design process to design fire protection systems to better protect the fire hazards. This paper will focus on application of these tools, specifically computer fire models, to actual cases such as: design of a smoke control system heat transfer analysis and egress of building occupants during potential fires.

  • PDF

A Study on the Thermal Protection Performance of Elastomeric Insulators in Different Mixing Environments (탄성내열재 배합 환경에 따른 내열 성능 변화에 관한 연구)

  • Kim, Namjo;Seo, Sangkyu;Kang, Yoongoo;Go, Cheongah
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.1
    • /
    • pp.108-115
    • /
    • 2019
  • The thermal response of elastomeric insulators used as protection against high-temperature and high-pressure combustion gases varies depending on their composition and thermal environment conditions. In this paper, the thermal response characteristics of elastomeric insulators in different mixing environments were compared. Tests to determine thermal protection performance were carried out using a thermal protection rubber evaluation motor(TPREM), combustion gas velocities of 20 m/s and 100 m/s were tested at a chamber pressure of 1,000 psig. The pressure time curve of the chamber, the temperature time curve of the internal materials, the residual thickness and the thermal destruction depth of the test specimens were obtained. The results showed that the thermal protection performance of elastomeric insulators in different mixing environments was similar.

Numerical Study on Ground Vibration Reduction Performance of Concrete Drainage Protection Facility (콘크리트 배수관로 보호구의 지반진동 저감 성능에 관한 수치해석적 연구)

  • Jung, Seung-Won;Kim, Jung-Gyu;Kim, Jun-Ha;Baluch, Khaqan;Kim, Jong-Gwan
    • Explosives and Blasting
    • /
    • v.39 no.4
    • /
    • pp.12-21
    • /
    • 2021
  • In this study, a series of FEM numerical analyses was conducted to compare the resistance performance of concrete drainage protection facility to blast vibration. Two different types of ㅁ-shaped protection facility, which are suggested in the study, were compared to the traditional ㄷ-shaped one. In the analyses, the vibration resistances of the three protection facilities were evaluated under the varying conditions of the standoff distance from the explosion and charge weight per delay. As a result, it was found that the two proposed types of drainage protection facilities are superior to the traditional one in the vibration reduction performance.

Development of Performance Index for Ubiquitous Building Fire Safety System - Focused on Sprinkler System - (유비쿼터스 건물 화재안전시스템을 위한 성능지수 개발 - 스프링클러 시스템을 중심으로 -)

  • Kim, Jong-Hoon;Roh, Sam-Kew
    • Fire Science and Engineering
    • /
    • v.23 no.3
    • /
    • pp.23-30
    • /
    • 2009
  • For managing fire safety system in building by ubiquitous management system, the index system to express the performance level of fire protection system is demanded. If some component formed fire protection system such as sprinkler water supply system is breakdown, that will fall down the performance of fire protection capacity. Consequently, it will affects the level of fire safety of building management and energy response. Consequently, Building fire protection system could give performance level of fire protection condition and the level of fire safety in building. It will also contribute to the development of wide area fire safety management. This development of index system has been developed as a part of the development project of Ubiquitous building fire management system.

Structure Design of Fall Impact Protection Pad Using 3D Printing Technology and Comparison of Characteristics According to Filament Material (3D 프린팅 기술을 활용한 낙상충격 보호패드 구조설계 및 필라멘트 소재에 따른 특성 비교)

  • Park, Jung Hyun;Jung, Hee-Kyeong;Lee, Jeong Ran
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.41 no.5
    • /
    • pp.939-949
    • /
    • 2017
  • This study uses 3D printing technology to design and fabricate a fall impact protection pad with a spacer fabric structure. The design of the pads consists of hexagonal three-dimensional units connected in a honey-comb shape; in addition, the unit consists of a surface layer and a spacer layer. Protect pads were designed as either a hexagonal type or diamond type according to the surface layer structure; subsequently, a spacer filament was also designed as the most basic I-shape type. Designed pads were printed using four types of flexible filaments to select suitable material for a fall impact protection pad. Impact protection performance and bending stiffness were evaluated for the eight type of pad outputs. As a result of the impact protection performance evaluation, when the force of 6,500N was applied, the force passed through the pad was in the range of 1,370-2,132N. FlexSolid$^{(R)}$ and Skinflex$^{TM}$ showed good protection performance and cubicon flexible filament showed the lowest protection. NinjaFlex$^{(R)}$ was found to be the most flexible in the bending stiffness evaluation.

Effectiveness of Active Hood and Pedestrian Protection Airbag Based on Real Vehicle Impact Test (실차평가시험을 기반으로 한 액티브 후드 및 보행자 보호 에어백 효과)

  • Yun, Yong-Won;Park, Gyung-Jin;Kim, Tai-Kyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.1
    • /
    • pp.36-45
    • /
    • 2014
  • Pedestrian to vehicle traffic accidents show a very high mortality rate compared to the frequency of occurrence. In order to improve the pedestrian protection performance of the vehicle, the korean government added a "pedestrian safety" entry from the year 2007. The performance for pedestrian protection of current vehicles gradually improved compared to the past, but it is still insufficient. It was found that the pedestrian protection performance was very weak, such as the top of the bonnet, the A-pillar and under the front windshield. A application of an active hood and pedestrian protection airbags can be countermeasures for these weak points of pedestrian safety. The active hood and pedestrian protection airbags are designed and manufactured to apply to the top of the hood and to the bottom of the windshield. The manufactured system is equipped in a test vehicle and evaluated based on the Korea New Car Assessment Program(KNCAP) test procedures for the performance of pedestrian safety. As a result, the outstanding effect of pedestrian protection has been achieved by the active hood and the pedestrian protection airbag. The rates of pedestrian injury are reduced by 82.2% and 95.4%, respectively.