• 제목/요약/키워드: Protamine sulfate precipitation

Search Result 7, Processing Time 0.026 seconds

Studies on the production of Japanese encephalitis virus vaccine (일본뇌염백신 제조에 관한 연구)

  • 유건희;이용재
    • Korean Journal of Microbiology
    • /
    • v.9 no.4
    • /
    • pp.175-178
    • /
    • 1971
  • Because of the cases of Japanese Encephalitis(J.E.) were reported every year in Korea. We, Dong-A Pharmaceutical Co., Ltd., produced J.E. virus vaccine, with lower price, since 1970 in order to prevent ourselves from being infected by the disease. And inoculated the J.E. virus vaccine for the children with a great success. We are going to report several questions which brought about in producing the J.E. virus vaccine by alcohol precipitation, protamine sulfate treatment method. The results obtained were as folows ; 1) In process treated with 40% alcohol, we used to ethanol made in Germany, but it was too expensive to use it. As the result which we had studied about it, we were satisfied with J.E. virus vaccine which produced with alcohol made in Korea, and then, we treated with accurate specific gravity of 40% ethanol for the precipitation of the virus. And also, we knew that it was the best method to be treated it for 3hrs, $13^{\circ}C$. 2) When we treated with protamine sulfate (0.025mg/ml), we acquired the highest potent titer, and suited into purpose for the nitrogen concentration. 3) The filtration of the purified J.E. virus vaccine, in case of millipore filter paper of large pore size was not suitable for the sterility. Therefore the pore size less than 0.8.$\mu$ (AA filter paper) in millipore filter paper was very suitable. But it seemed to be important subhects that the smaller was the pore size, the lower was the potent titer.

  • PDF

Characterization of L-Galactono-1, 4-lactone Oxidase Purified from Saccharomyces cerevisiae (Saccharomyces cerevisiae에서 분리한 L-Galactono-1, 4-lactone Oxidase의 특성)

  • 이승복;강사욱
    • Korean Journal of Microbiology
    • /
    • v.26 no.1
    • /
    • pp.52-59
    • /
    • 1988
  • A partially purified preparation of L-galactonolactone oxidase which catalyzes the last step of L-ascorbic acid biosynthesis was obtained from Saccharomyces cerevisiae ATCc 26787. The purification procedures included Triton X-100 treatment, protamine sulfate precipitation, ammonium sulfate precipitation, DEAE-Sepharose CL-6B ion exchange chromatography, Sephadex G-150 gel filtration chromatography, and Phenyl-Sepharose CL-4B hydrophobic interaction chromatography. The optimum temperature for the enzyme activity was about $34^{\circ}C$ and the optimum pH was 6.8-7.0. The substrate specificity was confined to L-aldonolactones, L-galactono-1,4-lactone and L-gulono-1,4-lactone. An apparent Km value of 0.294mM with L-galactono-1,4-lactone as a substrate was found. By comparing the substrate specificities of this enzyme with those of isofunctional enzymes of higher plants and animals, it becomes evident that the enzyme of S. cerevisiae ATCC 26787 is rather similar to the L-gulonolactone oxidase of animals than the galactonolactone dehydrogenase of higher plants.

  • PDF

Production, Purification and Characterization of $\beta$-Galactosidase from Bifidobaacterium longurn KCTC 3 2 15 (Bifidobacterium longum KCTC 3215에 의한 $\beta$-Galactosidase의 생산. 정제 및 특성)

  • 강국희;민해기;장영효;이호근
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.5
    • /
    • pp.456-463
    • /
    • 1991
  • $\beta$-Galactosidase of Bifidobacterium longum KCTC 3215 was studied on the production, purification, and characterization. Optimum conditions for the enzyme production were in the medium of 1.0% lactose as carbon source, initial pH 7.0 and in 17 hours of cultivation at $37^{\circ}C$. The enzyme was purified 9.25 folds by protamine sulfate precipitation, ammonium sulfate fractionation, DEAE-Sephadex A-50 ion exchange chromatography and Sephadex G-150 gel filtration. The maximal P-galactosidase activity was observed at pH 6.5 and at the temperature of $40^{\circ}C$ This enzyme was stable at pH 6.0-8.5. Metal ions such as $Ca^{2+} \;and \; Co^{2+}$, 2-mercaptoethanol, cysteine, and glutathione stimulated B-galactosidase activity. The enzyme activity was inhibited by addition of $Mg^{2+}, Fe^{2+}, Cs^{1+}, Li^{1+}$, DETA, galactose, and $\rho$-chloromercuribenzoic acid. The kinetics of o-nitrophenyl-$\beta$-D-galactopyranoside and lactose were $K_m$ = 1.66 mM, $V_{max}= 0.30 mM/min\cdot mg\cdot protein$ and $KK_m = 3.18 mM, \; V_{max}= 0.42 mM/min \cdot mg\cdot$ protein, respectively. The molecular weight of native enzyme was about 360, 000 dalton and the enzyme consisted of 2 identical subunits with a molecular weight of 180, 000.

  • PDF

Characterization of laccase from pleurotus ostreatus (Pleurotus ostreatus의 laccase 작용특성)

  • 김규중;신광수;맹진수;강사욱;하영칠;홍순우
    • Korean Journal of Microbiology
    • /
    • v.25 no.2
    • /
    • pp.148-156
    • /
    • 1987
  • Extracellular laccase (E.C. 1.10.3.2) from the culture filtrate of Pleurotus ostreatus was purified by ammonium sulfate precipctation, protamine sulfate precipitation, DEAE-Sephadex A-50 ion exchange chromatography and Sephadex G-100 gel permeation chromatography. The molecular weight of the enzyme was estimated by SDS-polyacrylamide gel electrophoresis to be 58,000 and the isoelectric point was 3.75. The optimum temperature for the enzyme was about $45^{\circ}C$ and the optimum pH was 6.5. The enzyme was found to be stable at temperature below $35^{\circ}C$ and rapidly inactivated at higher temperatures. Km values for ferulic acid, vanillic acid, dihydroxyphenylalanine (DOPA) were 48.6.$\mu$M, 0.52mM, and 2.73mM, respectively, which indicates that the enzyme has much higher affinity towards ferulic acid. The reaction products of the enzyme were separated by TLC and HPLC.

  • PDF

Production, Purification and Characterization of $\beta$-Galactosidase from Streptococcus thermophilus 510 (Streptococcus thermophilus 510에 의한 $\beta$-Galactosidase의 생산, 정제 및 특성)

  • 강국희;박신인
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.1
    • /
    • pp.35-45
    • /
    • 1989
  • Streptococcus thermophilus 510 was investigated as n potential source of $\beta$-galactosidase. Optimum cultural conditions for maximum enzyme production were 0.5% loctose as carbon source, initial pH 7.0, 37 $^{\circ}C$, and 18 hours of cultivation. The enzyme was purified to homogeneity by ammonium sulfate fractionation, protamine sulfate precipitation, Sephadex G-200 gel filtration, and DEAE-Sephadex A-50 ion exchange chromntography. The purified enzyme exhibited an optimum pH at 1.0, and an optimum temperature of 5$0^{\circ}C$. Metal ions such as Mn$^{2+}$ and $K^+$, dithiothreitol, and 2-mercaptoethanol stimulated $\beta$-galactosidase activity. Ethylenediamine tetraacetic add, 8-hydroxyquinoline, Hg$^2+$, Zn$^{2+}$, Co$^{2+}$, $Ca^{2+}$, and galactose were inhibitory. The $K_m$ and V$_{max}$ for o-nitrophenyl $\beta$-D-galactopyranoside were 1.25mM and 88.50$\mu$moles/min.mg protein, respectively. The molecular weight was estimated to be 520,000, and the amino acid composition indicated relatively high contents of glutamic acid, aspartic acid, leucine, and valine.

  • PDF

Purification and Characterization of Protein Phosphatase 2A from Petals of the Tulip Tulipa gesnerina

  • Azad, Md. Abul Kalam;Sawa, Yoshihiro;Ishikawa, Takahiro;Shibata, Hitoshi
    • BMB Reports
    • /
    • v.39 no.6
    • /
    • pp.671-676
    • /
    • 2006
  • The holoenzyme of protein phosphatase (PP) from tulip petals was purified by using hydrophobic interaction, anion exchange and microcystin affinity chromatography to analyze activity towards p-nitrophenyl phosphate (p-NPP). The catalytic subunit of PP was released from its endogenous regulatory subunits by ethanol precipitation and further purified. Both preparations were characterized by immunological and biochemical approaches to be PP2A. On SDS-PAGE, the final purified holoenzyme preparation showed three protein bands estimated at 38, 65, and 75 kDa while the free catalytic subunit preparation showed only the 38 kDa protein. In both preparations, the 38 kDa protein was identified immunologically as the catalytic subunit of PP2A by using a monoclonal antibody against the PP2A catalytic subunit. The final 623- and 748-fold purified holoenzyme and the free catalytic preparations, respectively, exhibited high sensitivity to inhibition by 1 nM okadaic acid when activity was measured with p-NPP. The holoenzyme displayed higher stimulation in the presence of ammonium sulfate than the free catalytic subunit did by protamine, thereby suggesting different enzymatic behaviors.

A TMT-based quantitative proteomic analysis provides insights into the protein changes in the seeds of high- and low- protein content soybean cultivars

  • Min, Cheol Woo;Gupta, Ravi;Truong, Nguyen Van;Bae, Jin Woo;Ko, Jong Min;Lee, Byong Won;Kim, Sun Tae
    • Journal of Plant Biotechnology
    • /
    • v.47 no.3
    • /
    • pp.209-217
    • /
    • 2020
  • The presence of high amounts of seed storage proteins (SSPs) improves the overall quality of soybean seeds. However, these SSPs pose a major limitation due to their high abundance in soybean seeds. Although various technical advancements including mass-spectrometry and bioinformatics resources were reported, only limited information has been derived to date on soybean seeds at proteome level. Here, we applied a tandem mass tags (TMT)-based quantitative proteomic analysis to identify the significantly modulated proteins in the seeds of two soybean cultivars showing varying protein contents. This approach led to the identification of 5,678 proteins of which 13 and 1,133 proteins showed significant changes in Daewon (low-protein content cultivar) and Saedanbaek (high-protein content cultivar) respectively. Functional annotation revealed that proteins with increased abundance in Saedanbaek were mainly associated with the amino acid and protein metabolism involved in protein synthesis, folding, targeting, and degradation. Taken together, the results presented here provide a pipeline for soybean seed proteome analysis and contribute a better understanding of proteomic changes that may lead to alteration in the protein contents in soybean seeds.