• Title/Summary/Keyword: Prostate imaging reporting and data system

Search Result 9, Processing Time 0.021 seconds

Prostate Imaging Reporting and Data System (PI-RADS) v 2.1: Overview and Critical Points (전립선영상 판독과 자료체계 2.1 버전: 개요와 비판적인 의견)

  • Chan Kyo Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.84 no.1
    • /
    • pp.75-91
    • /
    • 2023
  • The technical parameters and imaging interpretation criteria of the Prostate Imaging Reporting and Data System version 2 (PI-RADS v2) using multiparametric MRI (mpMRI) are updated in PI-RADS v2.1. These changes have been an expected improvement for prostate cancer evaluation, although some issues remain unsolved, and new issues have been raised. In this review, a brief overview of PI-RADS v2.1 is and several critical points are discussed as follows: the need for more detailed protocols of mpMRI, lack of validation of the revised transition zone interpretation criteria, the need for clarification for the revised diffusion-weighted imaging and dynamic contrast-enhanced imaging criteria, anterior fibromuscular stroma and central zone assessment, assessment of background signal and tumor aggressiveness, changes in the structured report, the need for the parameters for imaging quality and performance control, and indications for expansion of the system to include other indications.

Detection of Incidental Prostate Cancer or Urothelial Carcinoma Extension in Urinary Bladder Cancer Patients by Using Multiparametric MRI: A Retrospective Study Using Prostate Imaging Reporting and Data System Version 2.0 (방광암 환자의 다중 매개 자기공명영상에서 우연히 발견된 전립선암 또는 요로상피세포암종의 전립선 침범의 검출: 전립선 이미징 보고 및 데이터 시스템 버전 2.0을 사용한 후향적 연구)

  • Sang Eun Yoon;Byung Chul Kang;Hyun-Hae Cho;Sanghui Park
    • Journal of the Korean Society of Radiology
    • /
    • v.81 no.3
    • /
    • pp.610-619
    • /
    • 2020
  • Purpose The study aimed to investigate the role of Prostate Imaging Reporting and Data System version 2 (PI-RADS v2) in predicting incidental prostate cancer (PCa) or urothelial carcinoma (UCa) extension in urinary bladder (UB) cancer patients. Materials and Methods A total of 72 UB cancer patients who underwent radical cystoprostatectomy and 3 Tesla multiparametric MRI before surgery were enrolled. PI-RADS v2 ratings were assigned by two independent radiologists. All prostate specimens were examined by a single pathologist. We compared the multiparametric MRI findings rated using PI-RADS v2 with the pathologic data. Results Of the 72 UB cancer patients, 29 had incidental PCa (40.3%) and 20 showed UCa extension (27.8%), with an overlap for 3 patients. With a score of 4 as the cut-off value for predicting incidental PCa, the diagnostic accuracy was 65.3%, specificity was 90.7%, and positive predictive value (PPV) was 66.7%. The diagnostic accuracy for incidental UCa extension was 47.2%, specificity was 92.3%, and PPV was 83.3%. Conclusion Despite the low diagnostic accuracy, the PPV and specificity were relatively high. Therefore, PI-RADS v2 scores of 1, 2, or 3 may help exclude the probability of incidental PCa or UCa extension.

Use of Imaging and Biopsy in Prostate Cancer Diagnosis: A Survey From the Asian Prostate Imaging Working Group

  • Li-Jen Wang;Masahiro Jinzaki;Cher Heng Tan;Young Taik Oh;Hiroshi Shinmoto;Chau Hung Lee;Nayana U. Patel;Silvia D. Chang;Antonio C. Westphalen;Chan Kyo Kim
    • Korean Journal of Radiology
    • /
    • v.24 no.11
    • /
    • pp.1102-1113
    • /
    • 2023
  • Objective: To elucidate the use of radiological studies, including nuclear medicine, and biopsy for the diagnosis and staging of prostate cancer (PCA) in clinical practice and understand the current status of PCA in Asian countries via an international survey. Materials and Methods: The Asian Prostate Imaging Working Group designed a survey questionnaire with four domains focused on prostate magnetic resonance imaging (MRI), other prostate imaging, prostate biopsy, and PCA backgrounds. The questionnaire was sent to 111 members of professional affiliations in Korea, Japan, Singapore, and Taiwan who were representatives of their working hospitals, and their responses were analyzed. Results: This survey had a response rate of 97.3% (108/111). The rates of using 3T scanners, antispasmodic agents, laxative drugs, and prostate imaging-reporting and data system reporting for prostate MRI were 21.6%-78.9%, 22.2%-84.2%, 2.3%-26.3%, and 59.5%-100%, respectively. Respondents reported using the highest b-values of 800-2000 sec/mm2 and fields of view of 9-30 cm. The prostate MRI examinations per month ranged from 1 to 600, and they were most commonly indicated for biopsy-naïve patients suspected of PCA in Japan and Singapore and staging of proven PCA in Korea and Taiwan. The most commonly used radiotracers for prostate positron emission tomography are prostate-specific membrane antigen in Singapore and fluorodeoxyglucose in three other countries. The most common timing for prostate MRI was before biopsy (29.9%). Prostate-targeted biopsies were performed in 63.8% of hospitals, usually by MRI-ultrasound fusion approach. The most common presentation was localized PCA in all four countries, and it was usually treated with radical prostatectomy. Conclusion: This survey showed the diverse technical details and the availability of imaging and biopsy in the evaluation of PCA. This suggests the need for an educational program for Asian radiologists to promote standardized evidence-based imaging approaches for the diagnosis and staging of PCA.

Comparison of Urologist Satisfaction for Different Types of Prostate MRI Reports: A Large Sample Investigation

  • Jinman Zhong;Weijun Qin;Yu Li;Yang Wang;Yi Huan;Jing Ren
    • Korean Journal of Radiology
    • /
    • v.21 no.12
    • /
    • pp.1326-1333
    • /
    • 2020
  • Objective: To evaluate urologist satisfaction on structured prostate MRI reports, including report with tumor-node-metastasis (TNM) staging (report B) and with Prostate Imaging Reporting and Data System (PI-RADS) score with/without TNM staging (report C, report with PI-RADS score only [report C-a] and report with PI-RADS score and TNM staging [C-b]) compared with conventional free-text report (report A). Materials and Methods: This was a prospective comparative study. Altogether, 3015 prostate MRI reports including reports A, B, C-a, and C-b were rated by 13 urologists using a 5-point Likert Scale. A questionnaire was used to assess urologist satisfaction based on the following parameters: correctness, practicality, and urologist subjectivity. Kruskal-Wallis H-test followed by Nemenyi test was used to compare urologists' satisfaction parameters for each report type. The rate of urologist-radiologist recalls for each report type was calculated. Results: Reports B and C including its subtypes had higher ratings of satisfaction than report A for overall satisfaction degree, and parameters of correctness, practicality, and subjectivity (p < 0.05). There was a significant difference between report B and C (p < 0.05) in practicality score, but no statistical difference was found in overall satisfaction degree, and correctness and subjectivity scores (p > 0.05). Compared with report C-b (p > 0.05), report B and C-a (p < 0.05) showed a significant difference in overall satisfaction degree and parameters of practicality and subjectivity. In terms of correctness score, neither report C-a nor C-b had a significant difference with report B (p > 0.05). No statistical difference was found between report C-a and C-b in overall satisfaction degree and all three parameters (p > 0.05). The rate of urologist-radiologist recalls for reports A, B, C-a and C-b were 29.1%, 10.8%, 18.1% and 11.2%, respectively. Conclusion: Structured reports, either using TNM or PI-RADS are highly preferred over conventional free-text reports and lead to fewer report-related post-hoc inquiries from urologists.

Prostate Imaging-Reporting and Data System: Comparison of the Diagnostic Performance between Version 2.0 and 2.1 for Prostatic Peripheral Zone

  • Hyun Soo Kim;Ghee Young Kwon;Min Je Kim;Sung Yoon Park
    • Korean Journal of Radiology
    • /
    • v.22 no.7
    • /
    • pp.1100-1109
    • /
    • 2021
  • Objective: To compare the diagnostic performance between Prostate Imaging-Reporting and Data System version 2.0 (PI-RADSv2.0) and version 2.1 (PI-RADSv2.1) for clinically significant prostate cancer (csPCa) in the peripheral zone (PZ). Materials and Methods: This retrospective study included 317 patients who underwent multiparametric magnetic resonance imaging and targeted biopsy for PZ lesions. Definition of csPCa was International Society of Urologic Pathology grade ≥ 2 cancer. Area under the curve (AUC), sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy for csPCa were analyzed by two readers. The cancer detection rate (CDR) for csPCa was investigated according to the PI-RADS categories. Results: AUC of PI-RADSv2.1 (0.856 and 0.858 for reader 1 and 2 respectively) was higher than that of PI-RADSv2.0 (0.795 and 0.747 for reader 1 and 2 respectively) (both p < 0.001). Sensitivity, specificity, PPV, NPV, and accuracy for PI-RADSv2.0 vs. PI-RADSv2.1 were 93.2% vs. 88.3% (p = 0.023), 52.8% vs. 76.6% (p < 0.001), 48.7% vs. 64.5% (p < 0.001), 94.2% vs. 93.2% (p = 0.504), and 65.9% vs. 80.4% (p < 0.001) for reader 1, and 96.1% vs. 92.2% (p = 0.046), 34.1% vs. 72.4% (p < 0.001), 41.3% vs. 61.7% (p < 0.001), 94.8% vs. 95.1% (p = 0.869), and 54.3% vs. 78.9% (p < 0.001) for reader 2, respectively. CDRs of PI-RADS categories 1-2, 3, 4, and 5 for PI-RADSv2.0 vs. PI-RADSv2.1 were 5.9% vs. 5.9%, 5.8% vs. 12.5%, 39.8% vs. 56.2%, and 88.9% vs. 88.9% for reader 1; and 4.5% vs. 4.1%, 6.1% vs. 11.1%, 32.5% vs. 53.4%, and 85.0% vs. 86.8% for reader 2, respectively. Conclusion: Our data demonstrated improved AUC, specificity, PPV, accuracy, and CDRs of category 3 or 4 of PI-RADSv2.1, but decreased sensitivity, compared with PI-RADSv2.0, for csPCa in PZ.

Role of Multiparametric Prostate Magnetic Resonance Imaging before Confirmatory Biopsy in Assessing the Risk of Prostate Cancer Progression during Active Surveillance

  • Joseba Salguero;Enrique Gomez-Gomez;Jose Valero-Rosa;Julia Carrasco-Valiente;Juan Mesa;Cristina Martin;Juan Pablo Campos-Hernandez;Juan Manuel Rubio;Daniel Lopez;Maria Jose Requena
    • Korean Journal of Radiology
    • /
    • v.22 no.4
    • /
    • pp.559-567
    • /
    • 2021
  • Objective: To evaluate the impact of multiparametric magnetic resonance imaging (mpMRI) before confirmatory prostate biopsy in patients under active surveillance (AS). Materials and Methods: This retrospective study included 170 patients with Gleason grade 6 prostate cancer initially enrolled in an AS program between 2011 and 2019. Prostate mpMRI was performed using a 1.5 tesla (T) magnetic resonance imaging system with a 16-channel phased-array body coil. The protocol included T1-weighted, T2-weighted, diffusion-weighted, and dynamic contrast-enhanced imaging sequences. Uroradiology reports generated by a specialist were based on prostate imaging-reporting and data system (PI-RADS) version 2. Univariate and multivariate analyses were performed based on regression models. Results: The reclassification rate at confirmatory biopsy was higher in patients with suspicious lesions on mpMRI (PI-RADS score ≥ 3) (n = 47) than in patients with non-suspicious mpMRIs (n = 61) and who did not undergo mpMRIs (n = 62) (66%, 26.2%, and 24.2%, respectively; p < 0.001). On multivariate analysis, presence of a suspicious mpMRI finding (PI-RADS score ≥ 3) was associated (adjusted odds ratio: 4.72) with the risk of reclassification at confirmatory biopsy after adjusting for the main variables (age, prostate-specific antigen density, number of positive cores, number of previous biopsies, and clinical stage). Presence of a suspicious mpMRI finding (adjusted hazard ratio: 2.62) was also associated with the risk of progression to active treatment during the follow-up. Conclusion: Inclusion of mpMRI before the confirmatory biopsy is useful to stratify the risk of reclassification during the biopsy as well as to evaluate the risk of progression to active treatment during follow-up.

Initial Experience of Transperineal Biopsy After Multiparametric Magnetic Resonance Imaging in Korea; Comparison With Transrectal Biopsy

  • Yoon, Sung Goo;Jin, Hyun Jung;Tae, Jong Hyun;No, Tae Il;Kim, Jae Yoon;Pyun, Jong Hyun;Shim, Ji Sung;Kang, Sung Gu;Cheon, Jun;Lee, Jeong Gu;Kim, Je Jong;Sung, Deuk Jae;Lee, Kwan Hyi;Kang, Seok Ho
    • The Korean Journal of Urological Oncology
    • /
    • v.16 no.3
    • /
    • pp.110-118
    • /
    • 2018
  • Purpose: The aim of this study is to confirm the detection rate of transperineal biopsy after multiparametric magnetic resonance imaging (mpMRI) and compared it to that of transrectal biopsy. We also examined the role of mpMRI and the rate of complications for each method. Materials and Methods: In a retrospective study, we analyzed 147 patients who underwent mpMRI before prostate biopsy because of elevated serum prostate-specific antigen and/or abnormal digital rectal examination findings at Korea University Hospital, Seoul, Korea from March 2017 to April 2018. Regions on the mpMRI that were suggestive of prostate cancer were categorized according to the Prostate Imaging-Reporting and Data System (PI-RADS v2). For transperineal biopsy, a 20-core saturation biopsy was performed by MRI-TRUS cognitive or fusion techniques and a 12-core biopsy was performed in transrectal biopsy. Results: Sixty-three and 84 patients were enrolled in transperineal group and transrectal group, respectively. The overall detection rate of prostate cancer in transperineal group was 27% higher than that in transrectal group. Classification according to PI-RADS score revealed a significant increase in detection rate in all patients, as the PI-RADS score increased. Frequency of complications using the Clavien-Dindo classifications revealed no significant differences in the total complications rate, but two patients in transrectal group received intensive care unit care due to urosepsis. Conclusions: Our results confirmed that transperineal biopsy is superior to transrectal biopsy for the detection of prostate cancer. From the complication point of view, this study confirmed that there were fewer severe complications in transperineal biopsy.

Comparison of Computed Diffusion-Weighted Imaging b2000 and Acquired Diffusion-Weighted Imaging b2000 for Detection of Prostate Cancer (전립선암 발견을 위한 계산형 확산강조영상 b2000과 실제 획득한 b2000 영상의 비교)

  • Yeon Jung Kim;Seung Ho Kim;Tae Wook Baek;Hyungin Park;Yun-jung Lim;Hyun Kyung Jung;Joo Yeon Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.83 no.5
    • /
    • pp.1059-1070
    • /
    • 2022
  • Purpose To compare the sensitivity of tumor detection and inter-observer agreement between acquired diffusion-weighted imaging (aDWI) b2000 and computed DWI (cDWI) b2000 in patients with prostate cancer (PCa). Materials and Methods Eighty-eight patients diagnosed with PCa by radical prostatectomy and having undergone pre-operative 3 Tesla-MRI, including DWI (b, 0, 100, 1000, 2000 s/mm2), were included in the study. cDWI b2000 was obtained from aDWI b0, b100, and b1000. Two independent reviewers performed a review of the aDWI b2000 and cDWI b2000 images in random order at 4-week intervals. A region of interest was drawn for the largest tumor on each dataset, and a Prostate Imaging-Reporting and Data System (PI-RADS) score based on PI-RADS v2.1 was recorded. Histologic topographic maps served as the reference standard. Results The study population's Gleason scores were 6 (n = 16), 7 (n = 53), 8 (n = 9), and 9 (n = 10). According to the reviewers, the sensitivities of cDWI b2000 and aDWI b2000 showed no significant differences (for reviewer 1, both 94% [83/88]; for reviewer 2, both 90% [79/88]; p = 1.000, respectively). The kappa values of cDWI b2000 and aDWI b2000 for the PI-RADS score were 0.422 (95% confidence interval [CI], 0.240-0.603) and 0.495 (95% CI, 0.308-0.683), respectively. Conclusion cDWI b2000 showed comparable sensitivity with aDWI b2000, in addition to sustained moderate inter-observer agreement, in the detection of PCa.

Initial experience of magnetic resonance imaging/ultrasonography fusion transperineal biopsy: Biopsy techniques and results for 75 patients

  • Tae, Jong Hyun;Shim, Ji Sung;Jin, Hyun Jung;Yoon, Sung Goo;No, Tae Il;Kim, Jae Yoon;Kang, Seok Ho;Cheon, Jun;Kang, Sung Gu
    • Investigative and Clinical Urology
    • /
    • v.59 no.6
    • /
    • pp.363-370
    • /
    • 2018
  • Purpose: The aim of this study is to describe the technique and to report early results of transperineal magnetic resonance imaging and ultrasonography (MRI-US) fusion biopsy. Materials and Methods: A total of 75 patients underwent MRI-US fusion transperineal biopsy. Targeted biopsy via MRI-US fusion imaging was carried out for cancer-suspicious lesions with additional systematic biopsy. Detection rates for overall and clinically significant prostate cancer (csPCa) were evaluated and compared between systematic and targeted biopsy. In addition, further investigation into the detection rate according to prostate imaging reporting and data system (PI-RADS) score was done. Results of repeat biopsies were also evaluated. Results: Overall cancer detection rate was 61.3% (46 patients) and the detection rate for csPCa was 42.7% (32 patients). Overall detection rates for systematic and targeted biopsy were 41.3% and 57.3% (p<0.05), respectively. Detection rates for csPCa were 26.7% and 41.3%, respectively (p<0.05). The cancer detection rates via MRI fusion target biopsy were 30.8% in PI-RADS 3, 62.1% in PI-RADS 4 and 89.4% in PI-RADS 5. Rates of csPCa missed by targeted biopsy and systematic biopsy were 0.0% and 25.0%, respectively. The cancer detection rate in repeat biopsies was 61.1% (11 among 18 patients) in which 55.5% of cancer suspected lesions were located in the anterior portion. Conclusions: Transperineal MRI-US fusion biopsy is useful for improving overall cancer detection rate and especially detection of csPCa. Transperineal MRI-US targeted biopsy show potential benefits to improve cancer detection rate in patients with high PIRADS score, tumor located at the anterior portion and in repeat biopsies.