• Title/Summary/Keyword: Prostate cancer cells

Search Result 301, Processing Time 0.027 seconds

Different Expressions of HIF-$1\alpha$, Bcl-2 and Baxin DU145 Prostate Cancer Cells Transplanted in Nude Mouse between X-Ray and Neutron Irradiation (누드마우스에 주입된 DU-145 전립샘암에서 엑스선과 중성자선에 의한 HIF-$1\alpha$, Bcl-2, Bax 발현의 차이)

  • Kong, Moon-Kyoo;Kang, Jin-Oh;Kim, Sang-Ki;Shin, Dong-Oh;Park, Seo-Hyun;Kim, Chang-Ju;Chang, Hyun-Kyung
    • Radiation Oncology Journal
    • /
    • v.27 no.4
    • /
    • pp.218-227
    • /
    • 2009
  • Purpose: To investigate the radiobiologic effects of neutron and X-ray irradiation on DU-145 prostate carcinoma cells by identifying the differences of HIF-$1\alpha$ expression and apoptosis. Materials and Methods: Nude mice were injected with the human prostate cancer cell line, DU-145, and then irradiated with 2 Gy and 10 Gy X-rays, or 0.6 Gy and 3.3 Gy neutrons, respectively. The mice were sacrificed at 24 hours and 120 hours after irradiation. The expression levels of HIF-$1\alpha$, Bcl-2 and Bax were compared with immunohistochemical staining and western blotting. The apoptotic indexes were compared with the Terminal deoxynucleotidyl biotin-dUTP nick and labeling (TUNEL) assay. Results: At day 1, HIF-$1\alpha$ and Bcl-2 expression decreased, while Bax expression and the number of TUNEL positive cells increased in neutron irradiated groups for the control and X-ray irradiated groups. The Bcl-2/Bax ratio was significantly lower in the neutron irradiated groups regardless of dose (p=0.001). The same pattern of the differences in the expressions of the HIF-$1\alpha$, Bcl-2, Bax, Bcl-2/Bax ratio, and apoptotic indexes were indentified at day 5. HIF-$1\alpha$ expression was related with Bcl-2 (p=0.031), Bax (p=0.037) expressions and the apoptotic indexes (p=0.016) at day 5. Conclusion: Neutron irradiation showed a decrease in HIF-$1\alpha$, Bcl-2 expression, and Bcl-2/Bax ratio, but increased Bax expression regardless of dose. This study suggests that the differences radiobiological responses between photon and neutron irradiation may be related to different HIF-$1\alpha$ expression and subsequent apoptotic protein expressions.

Biological activity of Euonymus alatus (Thunb.) Sieb. wing extracts (화살나무 날개 추출물의 생리활성)

  • Hye-Ji Min;Du-Hyun Kim;Kwon-Il Seo
    • Food Science and Preservation
    • /
    • v.30 no.2
    • /
    • pp.358-368
    • /
    • 2023
  • Euonymus alatus (Thunb.) Sieb., also known as the arrow tree in Korea, is a plant in East Asia used in traditional medicine and food. In particular, the wings of E. alatus are rich in phenolic compounds. This study evaluated the antioxidant, α-glucosidase inhibition, and anti-cancer activities of E. alatus wing extracts. The radical and hydrogen peroxide scavenging acitvities and reducing the power of 1,000 ㎍/mL E. alatus wing extracts, were similar to those of the positive control (0.1% BHT, 0.1% α-tocopherol). In addition, ethanol and methanol extract at 250 ㎍/mL showed 95.70 and 94.99% of α-glucosidase inhibition activity, respectively. The ethanol extract of E. alatus wings had the highest total polyphenol and flavonoid contents (867.8 mg% and 521.7 mg%, respectively). The E. alatus wing extracts significantly decreased the cell viability of LNCaP human prostate cancer cells (p<0.001), MDA-MB-231 human breast cancer cells (p<0.001), and HT-29 human colon cancer cells (p<0.001) in a dose-dependent manner. However, there was no significant effect on B16 mouse melanoma cells. Notably, the ethanol extracts showed higher cancer cell growth inhibitory activity in LNCaP and HT-29 cells than the other extracts. These results suggest that E. alatus wing extracts could have significant clinical applications, and our results can be used as basic data for future functional food material development.

Is Immunohistochemical Sex Hormone Binding Globulin Expression Important in the Differential Diagnosis of Adenocarcinomas?

  • Bulut, Gulay;Kosem, Mustafa;Bulut, Mehmet Deniz;Erten, Remzi;Bayram, Irfan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.18
    • /
    • pp.8203-8210
    • /
    • 2016
  • Adenocarcinomas (AC) are the most frequently encountered carcinomas. It may be quite challenging to detect the primary origin when those carcinomas metastasize and the first finding is a metastatic tumor. This study evaluated the role of sex hormone binding globulin (SHBG) positivity in tumor cells in the subclassification and detection of the original organ of adenocarcinomas. Between 1994 and 2008, 64 sections of normal tissue belonging to ten organs, and 116 cases diagnosed as adenoid cystic carcinoma and mucoepidermoid carcinoma of the salivary gland, lung adenocarcinoma, invasive ductal carcinoma of the breast, adenocarcinoma of stomach, colon, gallbladder, pancreas and prostate, endometrial adenocarcinoma and serous adenocarcinoma and mucinous adenocarcinoma of the ovary, were sent to the laboratory at the Department of Pathology at the Yuzuncu Yil University School of Medicine, where they were stained immunohistochemically, using antibodies against SHBG. The SHBG immunoreactivity in both the tumor cells and normal cells, together with the type, diffuseness and intensity of the staining were then evaluated. In the differential diagnosis of the adenocarcinomas of the organs, including the glandular structures, impressively valuable results are encountered in the tumor cells, whether the SHBG immunopositivity is evaluated alone or together with other IHC markers. Further extensive research with a larger number of cases, including instances of cholangiocarcinoma and cervix uteri AC [which we could not include in the study for technical reasons] should be performed, in order to appropriately evaluate the role of SHBG in the differential diagnosis of AC.

Effect of Bisphenol A, Nonylphenol, Pentachlorophenol on the Proliferation of MCF-1 and PC-3 Cells (Bisphenol A, Nonylphenol, Pentachlorophenol이 MCF-7 및 PC-3 세포 증식에 미치는 영향)

  • 이수민;최형기;유경희
    • KSBB Journal
    • /
    • v.18 no.5
    • /
    • pp.424-428
    • /
    • 2003
  • In the present study, we have analyzed effects of the endocrine distruptors, such as bisphenol A, nonylphenol and pentachlorophenol, on cell proliferation in the human breast cancer cell line, MCF-7, and the human prostate cancer cell line, PC-3, with MTT method. A dose dependent analysis of the cell proliferation of MCF-7 cells after administration of bisphenol A, nonylphenol and pentachlorophenol revealed a significant induction of cell proliferation. Maximum induction of cell proliferation was observed at concentrations between 10$\^$-7/ and 10$\^$-6/ M. Whereas, these chemicals had little effect on proliferation of PC-3 cells. These results demonstrated that bisphenol A, nonylphenol and pentachlorophenol do not induce proliferation of PC-3 cells but exhibit a significant induction of MCF-7 cell proliferation, suggesting all these chemicals are a estrogen mimic.

Anti-cancer Effects and Molecular Mechanisms of Withaferin A (Withaferin A의 다양한 항암 효과 및 분자생화학적 기전)

  • Woo, Seon Min;Min, Kyoung-Jin;Kwon, Taeg Kyu
    • Journal of Life Science
    • /
    • v.23 no.3
    • /
    • pp.462-469
    • /
    • 2013
  • Withaferin A is a steroidal lactone purified from the Indian medicinal plant Withania somnifera. It exhibits a wide variety of activities, including anti-tumor, anti-inflammation, and immunomodulation properties. In this review, we focused on the anti-cancer effects of withaferin A. Withaferin A inhibits cell proliferation, metastasis, invasion, and angiogenesis in cancer cells. Furthermore, it sensitized irradiation, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-, and doxorubicin-mediated apoptosis. The results showed that multiple mechanisms were involved in withaferin A-mediated anti-cancer effects. First, withaferin A increased intracellular reactive oxygen species (ROS) production and induced ER stress- and mitochondria-mediated apoptosis. Second, withaferin A inhibited the signaling pathways (Jak/STAT, Akt, Notch, and c-Met), which are important in cell survival, proliferation, and metastasis. Third, it induced apoptosis and inhibited cancer cell migration through the up-regulation of prostate apoptosis protein-4 (Par-4). Finally, withaferin A up-regulated pro-apoptotic protein expression levels through the inhibition of proteasome activity. Our findings suggested that withaferin A is a potential, potent therapeutic agent.

Delphinidin Suppresses Angiogenesis via the Inhibition of HIF-1α and STAT3 Expressions in PC3M Cells (전립선 암세포에서 delphinidin에 의한 HIF-1α와 STAT3 억제를 통한 혈관내피 성장 인자 발현 저해 효과)

  • Kim, Mun-Hyeon;Kim, Mi-Hyun;Park, Young-Ja;Chang, Young-Chae;Park, Yoon-Yub;Song, Hyun-Ouk
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.1
    • /
    • pp.66-71
    • /
    • 2016
  • Delphinidin is a blue-red pigment and one of the major anthocyanins in plants. It plays an important role in anti-oxidant, anti-inflammatory, anti-mutagenic and anti-cancer properties. In this study, we investigated the inhibitory effects of delphinidin on vascular endothelial growth factor (VEGF) gene expression, an important factor involved in angiogenesis and tumor progression in human prostate cancer. Delphinidin decreased levels of epidermal growth factor (EGF)-induced VEGF mRNA expression in PC-3M cells. The expression of the EGF-induced hypoxia inducible factor-$1{\alpha}$ (HIF-$1{\alpha}$) and signaling transducer and activator of transcription 3 (STAT3) proteins, which are the major transcription factors for VEGF, were inhibited by delphinidin. In addition, delphinidin decreases HRE-promoter reporter gene activity, suggesting that delphinidin can suppress the transcription of HIF-$1{\alpha}$ under EGF induction, leading to a decrease in the expression of VEGF. Delphinidin specifically suppressed the phosphorylation of Akt, p70S6K, and 4EBP1, but not the phosphorylation of EGFR. Therefore, our results suggest that delphinidin may inhibit human prostate cancer progression and angiogenesis by inhibiting HIF-$1{\alpha}$, STAT3 and VEGF gene expression.

Siamese Crocodile White Blood Cell Extract Inhibits Cell Proliferation and Promotes Autophagy in Multiple Cancer Cell Lines

  • Phosri, Santi;Jangpromma, Nisachon;Chang, Leng Chee;Tan, Ghee T.;Wongwiwatthananukit, Supakit;Maijaroen, Surachai;Anwised, Preeyanan;Payoungkiattikun, Wisarut;Klaynongsruang, Sompong
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.6
    • /
    • pp.1007-1021
    • /
    • 2018
  • Cancer represents one of the most significant threats to human health on a global scale. Hence, the development of effective cancer prevention strategies, as well as the discovery of novel therapeutic agents against cancer, is urgently required. In light of this challenge, this research aimed to evaluate the effects of several potent bioactive peptides and proteins contained in crocodile white blood cell extract (cWBC) against LU-1, LNCaP, PC-3, MCF-7, and CaCo-2 cancer cell lines. The results demonstrate that 25, 50, 100, and $200{\mu}g/ml$ cWBC exhibits a strong cytotoxic effect against all investigated cell lines ($IC_{50}$ $70.34-101.0{\mu}g/ml$), while showing no signs of cytotoxicity towards noncancerous Vero and HaCaT cells. Specifically, cWBC treatment caused a significant reduction in the cancerous cells' colony forming ability. A remarkable suppression of cancerous cell migration was observed after treatment with cWBC, indicating potent antimetastatic properties. The mechanism involved in the cancer cell cytotoxicity of cWBC may be related to apoptosis induction, as evidenced by typical apoptotic morphology features. Moreover, certain cWBC concentrations induced significant overproduction of ROS and significantly inhibited the $S-G_2/M$ transition in the cancer cell. The molecular mechanisms of cWBC in apoptosis induction were to decrease Bcl-2 and XIAP expression levels and increase the expression levels of caspase-3, caspase-8, and p53. These led to a decrease in the expression level of the cell cycle-associated gene cyclin-B1 and the arrest of cell population growth. Consequently, these findings demonstrate the prospect of the use of cWBC for cancer therapy.

Effect of Fermented Ginseng Extract by Mushroom Mycelia on Antiproliferation of Cancer Cells (버섯균사체로 발효시킨 인삼 추출물의 암세포 증식억제 효과)

  • Kim, Hyun-Young;Joung, Eun-Mi;Hwang, In-Guk;Jeong, Jae-Hyun;Yu, Kwang-Won;Lee, Jun-Soo;Jeong, Heon-Sang
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.1
    • /
    • pp.36-41
    • /
    • 2010
  • This study was conducted to investigate the effects of fermented ginseng extract by mushroom mycelia on antiproliferation of cancer cells. Phellinus linteus, Ganoderma lucidum, and Hericium erinaceum mycelia were inoculated to ginseng. The effects of fermented ginseng extract on antiproliferation of stomach (MKN-45), colon (HCT116), mammary (MCF-7), lung (NCIH460), prostate (PC-3), and liver (HepG2) cancer cells were investigated by MTT assay. Fermented ginseng extract showed significant antiproliferation effects compared with fresh ginseng extract. Fermented ginseng extract by P. linteus, G. lucidum, and H. erinaceum mycelia showed growth-inhibitory effect of 44.50, 17.75 and 43.98% viability at 1.5 mg/mL on the MKN-45 cell line, 62.86, 3.73, and 54.55% at 1.5 mg/mL on the HCT116 cell line, 41.81, 7.01, and 37.84% at 1.5 mg/mL on the MCF-7 cell line, 53.52, 5.31, and 35.27% at 1.5 mg/mL on the NCIH460 cell line, 35.05, 3.07, and 44.29% at 1.5 mg/mL on the PC-3 cell line, and 59.57, 6.34, and 4.97% at 1.5 mg/mL on the HepG2 cell line, respectively. These results indicated that fermented ginseng by G. lucidum mycelium showed the highest antiproliferation effect against various cancer cells.

Molecular Imaging Using Sodium Iodide Symporter (NIS) (Sodium Iodide Symporter (NIS)를 이용한 분자영상)

  • Cho, Je-Yoel
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.2
    • /
    • pp.152-160
    • /
    • 2004
  • Radioiodide uptake in thyroid follicular epithelial cells, mediated by a plasma membrane transporter, sodium iodide symporter (NIS), provides a first step mechanism for thyroid cancer detection by radioiodide injection and effective radioiodide treatment for patients with invasive, recurrent, and/or metastatic thyroid cancers after total thyroidectomy. NIS gene transfer to tumor cells may significantly and specifically enhance internal radioactive accumulation of tumors following radioiodide administration, and result in better tumor control. NIS gene transfers have been successfully performed in a variety of tumor animal models by either plasmid-mediated transfection or virus (adenovirus or retrovirus)-mediated gene delivery. These animal models include nude mice xenografted with human melanoma, glioma, breast cancer or prostate cancer, rats with subcutaneous thyroid tumor implantation, as well as the rat intracranial glioma model. In these animal models, non-invasive imaging of in vivo tumors by gamma camera scintigraphy after radioiodide or technetium injection has been performed successfully, suggesting that the NIS can serve as an imaging reporter gene for gene therapy trials. In addition, the tumor killing effects of I-131, ReO4-188 and At-211 after NIS gene transfer have been demonstrated in in vitro clonogenic assays and in vivo radioiodide therapy studies, suggesting that NIS gene can also serve as a therapeutic agent when combined with radioiodide injection. Better NIS-mediated imaging and tumor treatment by radioiodide requires a more efficient and specific system of gene delivery with better retention of radioiodide in tumor. Results thus far are, however, promising, and suggest that NIS gene transfer followed by radioiodide treatment will allow non-invasive in vivo imaging to assess the outcome of gene therapy and provide a therapeutic strategy for a variety of human diseases.

Tazarotene-Induced Gene 1 Enhanced Cervical Cell Autophagy through Transmembrane Protein 192

  • Shyu, Rong-Yaun;Wang, Chun-Hua;Wu, Chang-Chieh;Chen, Mao-Liang;Lee, Ming-Cheng;Wang, Lu-Kai;Jiang, Shun-Yuan;Tsai, Fu-Ming
    • Molecules and Cells
    • /
    • v.39 no.12
    • /
    • pp.877-887
    • /
    • 2016
  • Tazarotene-induced gene 1 (TIG1) is a retinoic acid-inducible protein that is considered a putative tumor suppressor. The expression of TIG1 is decreased in malignant prostate carcinoma or poorly differentiated colorectal adenocarcinoma, but TIG1 is present in benign or well-differentiated tumors. Ectopic TIG1 expression led to suppression of growth in cancer cells. However, the function of TIG1 in cell differentiation is still unknown. Using a yeast two-hybrid system, we found that transmembrane protein 192 (TMEM192) interacted with TIG1. We also found that both TIG1A and TIG1B isoforms interacted and co-localized with TMEM192 in HtTA cervical cancer cells. The expression of TIG1 induced the expression of autophagy-related proteins, including Beclin-1 and LC-3B. The silencing of TMEM192 reduced the TIG1-mediated upregulation of autophagic activity. Furthermore, silencing of either TIG1 or TMEM192 led to alleviation of the upregulation of autophagy induced by all-trans retinoic acid. Our results demonstrate that the expression of TIG1 leads to cell autophagy through TMEM192. Our study also suggests that TIG1 and TMEM192 play an important role in the all-trans retinoic acid-mediated upregulation of autophagic activity.