• Title/Summary/Keyword: Propulsion shafting vibration

Search Result 84, Processing Time 0.02 seconds

The Axial Vibration of Internal Combustion Engine Crankshaft (Part II. Resonant Amplitudes Calculation of the Crankshaft Axial Vibration) (내연기관 크랭크축계 종진동에 관한 연구 (제2보 : 크랭크축계 종진동의 공진진폭계산))

  • 김영주;고장권;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.69-91
    • /
    • 1982
  • The major factors which affect the crankshaft axial vibration are such items as the axial stiffness and mass of crankshaft, the thrust block stiffness, the propeller's entrained water and the exciting and damping forces of engine, propeller and shafting. Among above mentioned items, the axial stiffness and mass of crankshaft, thrust block stiffness and propeller's entrained water were treated in detail in part I, and so in this paper, the rest of above items will be studied. The exciting forces of crankshaft axial vibration are generated mainly from the gas explosion pressure of cylinder, the thrust fluctuation of propeller, and sometimes the torsional vibration of crankshaft induces the crankshaft axial vibration. As for the propeller thrust fluctuation, its harmonic components can be fairly exactly calculated from the experimental results of propeller in the towing tank, but as the calculation process is rather tedious and laborious, the empirical values are ordinarily used. On the other hand, the table of harmonic components of gas pressure has been already published by major slow speed diesel engine makers, but the axial thrust conversion factor of radial force is not unknown yet, and as its estimated value is unreliable, the axial vibration force of gas pressure is uncertain. As the calculation of damping force is very complicated and it includes some uncertain factors, the thoretically estimated amplitudes of axial vibration are much more incorrect in comparison with those of torsional vibrations. Authors have paid special attentions to deriving the theoretical calculation formula of axial conversion factor of radial force and damping force of crankshaft axial vibration and developed a computer program to calculate resonance amplitudes and additional stresses of crankshaft axial vibrations. Also, to check the reliability of the developed computer program, the axial vibrations of three ships' propulsion shaftings were analyzed and their results were compared with those of measured values and makers' results.

  • PDF

Ship Vibration Control Utilizing the Phase Difference Identification of Two Excitation Components with the Same Frequency Generated by Diesel Engine and Propeller (동일 주파수 성분의 디젤엔진과 프로펠러 기진력 위상차 규명을 이용한 선박 진동 제어)

  • Seong, Hyemin;Kim, Kisun;Joo, Wonho;Cho, Daeseung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.3
    • /
    • pp.160-167
    • /
    • 2020
  • A two-stroke diesel engine and a propeller normally adopted in large merchant ships are regarded as major ship vibration sources. They are directly connected and generate various excitation components proportional to the rotating speed of diesel engine. Among the components, the magnitude of two excitation components with the same frequency generated by both engine and propeller can be compensated by the adjustment of their phase difference. It can be done by the optimization of propeller assembly angle but requires a number of burdensome trials to find the optimal angle. In this paper, the efficient estimation method to determine optimal propeller assembly angle is proposed. Its application requires the axial vibration measurement in sea trial and the numerical vibration analysis for propulsion shafting which can be substituted by additional vibration measurement after one-trial modification of propeller assembly angle. In order to verify the validity of the proposed method, the phase difference between two fifth order excitation components generated by both diesel engine and propeller of a real ship is calculated by the finite element analysis and its result is indirectly validated by the comparison of axial vibration responses at intermediate shaft obtained by the numerical analysis and the measurement in sea trial. Finally, it is numerically confirmed that axial vibration response at intermediate shaft at a resonant speed can be decreased more than 87 % if the optimal propeller assembly angle determined by the proposed method is applied.

Control of torsional vibration for propulsion shafting with delayed engine acceleration by optimum design of a viscous-spring damper (점성-스프링 댐퍼 최적화 설계를 이용한 엔진 증속지연 특성을 갖는 추진축계 비틀림진동 제어)

  • Kim, Yang-Gon;Hwang, Sang-Jae;Kim, Young-Hwan;Kim, Sang-Won;Cho, Kwon-Hae;Kim, Ue-Kan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.7
    • /
    • pp.580-586
    • /
    • 2016
  • The ultra-long stroke engine was developed to generate greater power at lower speeds than previous designs to enhance the propulsion efficiency. The torsional exciting force, on the other hand, was increased significantly. Therefore, it is possible to control the torsional vibration of its shaft system equipped with the fuel efficient ultra-long stroke engine by adopting a damper although the torsional vibration could be controlled adequately by applying tuning and turning wheels on the engine previously. In this paper, the dynamic characteristics of a viscous-spring damper used to control the torsional vibration of the corresponding shaft system are reviewed and then examined to determine what vibration characteristics might be used to optimize the viscous-spring damper. In some cases, operators of eco-ships have recently experienced the problem of delayed RPM acceleration. It has been suggested that the proper measures for controlling the torsional vibration in the shaft system should involve adjusting the design parameters of its damper determined by the optimum damper design theory to avoid the fatigue damage of shafts.

A study on vibration control of the engine body for a large scale diesel engine using the semi-active controlled hydraulic type of top bracing (준능동형 유압식 톱브레이싱을 이용한 선박용 저속 2행정 디젤엔진의 본체 진동제어)

  • Lee, Moon-Seek;Kim, Yang-Gon;Hwang, Sang-Jae;Lee, Don-Chool;Kim, Ue-Kan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.6
    • /
    • pp.632-638
    • /
    • 2014
  • Nowadays, as part of an effort to increase the efficiency of propulsion shafting system, the revolution of the main diesel engine in CMCR(Contract Maximum Continuous Rating) is reduced whereas the stiffness of hull structure supporting the main diesel engine is relatively flexible. However, vibration problems related with resonant response of main diesel engine are increasing although top bracing is installed between the main diesel engine and the hull structures to increase natural frequency of engine body above CMCR to avoid resonant phenomenon. In this study, the dynamic characteristic of top bracing is reviewed by analyzing measuring results of general cargo ships which apply the hydraulic type instead of the friction type to control the natural frequency and the vibration of the engine body. Moreover, considering the vibration characteristic of the engine body and the hydraulic type of the top bracing by varying the number of top bracing, authors suggest the more effective way to control the vibration of the engine body despite of lower stiffness of the hull structure than in the past when the hydraulic type of top bracing is used.