• Title/Summary/Keyword: Propulsion control

Search Result 1,025, Processing Time 0.023 seconds

Experimental Investigation on the Performance of a Cavitating Venturi According to Upstream and Back Pressure Variation (전단압과 배압 변화에 따른 캐비테이션 벤츄리 성능의 실험적 연구)

  • Ahn, Hyun Jong;Kang, Yun Hyeong;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.6
    • /
    • pp.12-19
    • /
    • 2021
  • An experimental study was performed for a cavitating venturi supplying a constant rate of flow independent of downstream pressure fluctuations when providing liquid propellant. The venturi was designed and manufactured in order to figure out the performance of the cavitating venturi. Effects of the rear-end shape, upstream pressure, and back pressure on the ratio of downstream to upstream pressure of the venturi as well as the flow-rate were observed. As a result, critical pressure ratio of the venturi, which generally depends only on the configuration of the venturi, was kept at 0.74 regardless of the rear-end shape and the upstream pressure of the venturi.

Numerical Study and Thrust Prediction of Pintle-Controlled Nozzle with Split-line TVC System (스플릿라인 TVC 시스템을 적용한 핀틀 추력조절 노즐의 유동해석 및 추력 성능 예측)

  • Jo, Hana
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.3
    • /
    • pp.43-53
    • /
    • 2022
  • In this study, analysis of the flow characteristics of pintle-controlled nozzle with split-line TVC system and the thrust performance prediction was performed. The numerical computation was verified by comparing the thrust coefficient derived from the analysis results with the experimental data. By applying the same numerical analysis technique, the flow characteristics of nozzle were confirmed according to operating altitude, pintle stroke position and TVC angle with the 1/10 scale. As the TVC angle increased, thrust loss occurred and the tendency of AF was different depending on the position of the pintle stroke. Based on the analysis results, the relation of thrust coefficient was derived by applying the response surface methods. The thrust performance model with a slight difference of 1.2% on average from the analysis result was generated.

A Study on Azimuth Thruster for a Small Vessel (소형선박용 아지무쓰 추진기의 선회장치에 관한 연구)

  • Park, J.P.;Lee, J.M.;Jin, S.Y.;Bae, J.H.;Jung, Y.G.
    • Journal of Power System Engineering
    • /
    • v.13 no.5
    • /
    • pp.18-24
    • /
    • 2009
  • This paper shows the result of development about the revolution system of azimuth thruster which of power is less than 250kW for small ship. Advanced Azimuth revolution system can revolve propeller and rudder from 360 degree so that this system for vessel maneuvering can be excellent of propulsion effectively. Fluid power control system for azimuth thruster is designed with PID control system by using CEMTool/SIMTool program. And the actuator used for servo valve can control rudder angle, pressure and direction. The first, We had a test for the angle control of revolution system. The result of angle control confirmed that it has the good efficiency from experiment result of time input degree $30^{\circ}$, $90^{\circ}$ and $180^{\circ}$. The second, We had to a test for the pressure characteristic of hydraulic motor. As a result, We confirmed the maximum pressure 3.5MPa and steady state 0.7MPa nom experiment result of time input degree $30^{\circ}$. In this paper, it is identified the pressure characteristic of hydraulic motor and angle control for azimuth thruster by AMESim, and it has been confirmed the usefulness of AMEsim modeling was verified by comparison between AMESim simulation results and experiments results.

  • PDF

Development of the Robust Speed Controller for Marine Medium Speed Diesel Engines (선박용 중속 디젤 기관의 로바스트 속도제어기 개발)

  • 정병건;양주호;김창화
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.4
    • /
    • pp.27-35
    • /
    • 1996
  • The ship's propulsion efficiency depends upon a combibation of engine and propeller. The propeller has better efficiency as the engine has lower rotational speed. This situation led the engine manufacures to design the engine that has lower speed, longer stroke and a small number of cylinders. With this new trends the conventional mechanical-hydrualic governors for engine speed control have been replaced by digital speed controllers which adopted the PID control or the optimal control algorithm. But these control algorithms have not enough robustness to suppress the variations of the delay-time and the parameter perturbation especially in low speed engine. In this study we consider the perturbations of the engine parameters as the modeling uncetainties and design a robust speed controller for marine medium speed diesel engine by means of $ extit{H}_{infty}$control theory having the central solution. By comparing the results of the robust speed controller with those of mechanical governor and PID controller, the validity of the robust speed controller under parameter variations is confirmed. The speed control of the experimental diesel engine of carried out using actuator which is composed of PWM signal generator and D.C servo motor.

  • PDF

Development of the Robust Speed Controller for Marine Medium Speed Diesel Engines (선박용 중속 디젤 기관의 로바스트 속도제어기 개발)

  • Jung, B.G.;Yang, J.H.;Kim, C.H.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.4
    • /
    • pp.349-349
    • /
    • 1996
  • The ship's propulsion efficiency depends upon a combibation of engine and propeller. The propeller has better efficiency as the engine has lower rotational speed. This situation led the engine manufacures to design the engine that has lower speed, longer stroke and a small number of cylinders. With this new trends the conventional mechanical-hydrualic governors for engine speed control have been replaced by digital speed controllers which adopted the PID control or the optimal control algorithm. But these control algorithms have not enough robustness to suppress the variations of the delay-time and the parameter perturbation especially in low speed engine. In this study we consider the perturbations of the engine parameters as the modeling uncetainties and design a robust speed controller for marine medium speed diesel engine by means of $ extit{H}_{infty}$control theory having the central solution. By comparing the results of the robust speed controller with those of mechanical governor and PID controller, the validity of the robust speed controller under parameter variations is confirmed. The speed control of the experimental diesel engine of carried out using actuator which is composed of PWM signal generator and D.C servo motor.

Rupture Prediction of the Rupture Disk Using Elasto-Plastic Analysis (탄소성해석을 이용한 파열판의 파열예측)

  • Han, Houk-Seop;Lee, Won-Bok;Koo, Song-Hoe;Lee, Bang-Eop
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.3
    • /
    • pp.49-56
    • /
    • 2012
  • Rupture disks are a kind of safety device in high pressure equipment and they are used to control rupture pressure in the solid rocket motor. In this paper, a series of rupture experiments was performed using rupture disks made of AISI 316L and rupture pressure of rupture disks was calculated through various assumptions in relation between elasto-plastic material properties and true stress-strain curve. Experiment and FEA indicated rupture pressure is determined by size of rupture disks. As a result of elasto-plastic analysis, only multi-linear stress-strain curve was able to calculate meaningful estimations. Experimental results also showed rupture location are decided by the size of rupture disks. Experimental and FEA results will be applied to control rupture pressure of disks.

Control of the Base Pressure of the Supersonic Jet Using an Orifice (오리피스를 사용한 초음속 제트에서의 기저 압력 제어에 관한 연구)

  • Lee, Jong-Sung;Kim, Heuy-Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.2
    • /
    • pp.51-57
    • /
    • 2012
  • Base pressure at the base of high-speed jet has long been one of the important issues from both the view points of fluid dynamics as well as practical engineering applications. The base pressure characteristics of incompressible flows have been well known to date. However, the base pressure at transonic or supersonic speeds would be different due to the compressibility effects and shock waves. In the present paper, a CFD study has been performed to understand the base pressure characteristics at transonic and supersonic speeds, prior to experimental work. An emphasis is placed on the control of the base pressure using a simple orifice. A variety of supersonic jet plumes have been explored to investigate the flow variables influencing the base pressure. The results obtained were validated with existing experimental data and discussed in terms of the base pressure and discharge coefficient of the orifice.

An improvement of cycloconverter output using phase shifting filter (상천이 필터를 이용한 싸이클로컨버터 출력의 개선)

  • Kim, Jong-Su;Seo, Dong-Hoan;Kim, Jeong-Woo;Kim, Sung-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.1
    • /
    • pp.121-126
    • /
    • 2013
  • Cycloconverter used as a power conversion device in the speed and torque control system of AC machines has the advantage of a simple control and a large torque at low speed. In addition, because a rectifier, a DC link, and an inverter are not installed, this system is simple and suitable for large power system. If a power conversion device, which is currently used as a propulsion motor of large vessel, is changed into cycloconverter, the system is simplified and then the installation costs can be significantly reduced. However, conventional cycloconverter has the increased harmonics because the power loss is large and the waveform of output voltage is distorted, due to the high-speed switching of power semiconductor devices. In order to improve these shortcomings, this paper describes a phase shifting filter which is composed of two inputs with different phases in the primary side and one output in the secondary one. As the voltage waveforms with two different phases are added and transformed into the secondary side, these outputs are close to sinusoidal waves. Thereby the voltage waveforms, which are applied to the propulsion motors, are improved and total harmonic distortions (THDs) are significantly reduced.

A Study on the Evaluation of the Boarding Environment for the Ship Vibration (on the Basis of ISO-6954 : 2000(E)) (선박의 선내 진동에 의한 승선 환경 평가에 관한 연구 (ISO-6954 : 2000(E)의 평가방법에 기초))

  • Yu, Young-Hun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.13 no.4
    • /
    • pp.107-112
    • /
    • 2007
  • The vibration generated on shipboard is very important because it greatly affects on the comfortable mind of passenger and working conditions of crews. Shipboard vibration is closely concerned with the development of propulsion method and the type of main engine to decide speed of ship. To make the propulsion power, the main engine of ship have continuous explosion process in engine room, so the shipboard vibration is generated. The shipboard vibration causes the physiological and psychological damages to human body. In the case of the human body exposed to the shipboard vibration, the evaluation of human exposure to whole-body vibration is prescribed in ISO 6954 : 2000(E). In this paper, to evaluate the shipboard working environment, two kinds of vibration levels onboard ship were measured and compared with one another between engine rooms, engine control rooms and wheel house by the regulation of ISO 6954 : 2000(E).

  • PDF

Fuel Spiking Test for the Surge Margin Measurement in a Gas Turbine Engine (연료 돌출 시험에 의한 가스터빈엔진의 서지마진 측정)

  • Lee, Jin-Kun;Lee, Kyung-Jae;Ha, Man-Ho;Kim, Chun-Taek;Yang, Soo-Seok;Lee, Dae-Sung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.2
    • /
    • pp.18-24
    • /
    • 2004
  • A fuel spiking test was performed to measure the surge margin of the compressor in a gas turbine engine. During the test, fuel spiking signal is superposed on the engine controller demand signals and the combined signals are used to control a fuel control valve. For the superposition, a subsystem composed of a fuel controller and a function generator is used. The real engine test was performed at the Altitude Engine Test Facility (AETF) in Korea Aerospace Research Institute (KARI). In the preliminary test, the fuel spiking signals are in good agreement with the dynamic pressure at the fuel line and at the compressor discharge point. After the preliminary test, a fuel spiking test to measure the surge point at a specific engine speed was performed. The test results show that the fuel spiking test is very effective in the measurement of surge.