• 제목/요약/키워드: Propulsion Efficiency

검색결과 643건 처리시간 0.045초

추진기관 혁신적 연비향상을 위한 승압연소기 개요 및 연구동향 (Introduction to Pressure Gain Combustors for the Game-Changing SFC Improvement in Propulsion Systems)

  • 최정열
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제45회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.301-302
    • /
    • 2012
  • During a last decade, detonative combustion is promising combustion mechanism of high-speed propulsion systems, but is more rigorously considered in these days as a game-changer for the improvement of thermodynamic efficiency of propulsion and power generation systems. Regardless of the skepticism about the pressure loss associated with the strong shock waves, it is shown that the additional compression by the strong shock wave exhibits increased thermodynamics efficiency that is not achievable by conventional compression systems. Present talk will give an introduction to the concepts and the recent activities on the pressure gain combustors (PGC) researches based on detonation phenomena.

  • PDF

화염편 모델을 이용한 하이브리드 로켓의 연소과정 해석 (Flamelet Modeling for Combustion Processes of Hybrid Rocket Engine)

  • 임재범;강성모;김용모;윤명원
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2006년도 제27회 추계학술대회논문집
    • /
    • pp.237-240
    • /
    • 2006
  • Hybrid propulsion systems provide many advantages in terms of stable operation and safety. However, classical hybrid rocket motors have lower fuel regression rate and combustion efficiency compared to solid propellant rocket motor. Accordingly, the recent research efforts are focused on the improvement of engine efficiency and regressionrate in the hybrid rocket engine. The present study has numerically investigated the combustion processes and the flame structure in the hybrid rocket engine. The turbulent combustion is represented by the flamelet model and Low Reynolds number $k-{\varepsilon}$turbulent model is employed to reduce the uncertainties for convective heat transfer near solid fuel surface having strong blowing effect. Numerical results suggest that the present approach is capable of realistically simulating the combustion characteristics of the hybrid rocket engines.

  • PDF

무인 표적기 프로펠러의 최적 설계 II (Design of optimum propeller for target drone II)

  • 성형건;노태성
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2003년도 제21회 추계학술대회 논문집
    • /
    • pp.246-249
    • /
    • 2003
  • 무인 표적기에 탑재될 추진 시스템인 프로펠러를 설계하였다. 프로펠러 설계 방법으로 Vortex theory를 적용하였으며 설계 변수에 따른 프로펠러 성능을 해석하였다. 최적 설계 목표는 효율의 최대화이며, 또한 설계된 프로펠러의 성능을 해석하였다.

  • PDF

이상 브레이튼 사이클에서의 램 제트 추진기관 성능의 기본 특성 (Performance Characters of the Ramjet Based on Ideal Brayton Cycle)

  • 이태호
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2003년도 제21회 추계학술대회 논문집
    • /
    • pp.117-121
    • /
    • 2003
  • In order to investigate the performance characters of the ramjet propulsion, at the first step, in this paper Ideal Brayton cycle is adopted. In the Ideal Ramjet cycle some of the Parameters are independent of the heat input, for example thermal efficiency but in the Ideal Brayton cycle, Mach number and the entry temperature of the combustion chamber are important variables with the heat input.

  • PDF

고체램제트 추진기관 성능에 미치는 고도의 영향 (Altitude Effects on the Performance of the Solid Fuel Ramjet)

  • 이태호
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2007년도 제28회 춘계학술대회논문집
    • /
    • pp.272-275
    • /
    • 2007
  • 고체 램제트 추진기관의 연소효율은 연소실 흡입공기 온도에 따라서 영향을 받고 있다. 이 흡입공기의 온도는 비행 마하수와 비행 대기의 온도에 따라 다르게 마련이다. 비행 고도가 변하는 상황이라면 홉입 공기의 온도뿐만 아니라 대기의 밀도 또한 변하게 되어 이들 성능에 미치는 영향을 연소 효율과 연관하여 조사하였다.

  • PDF

Gasturb를 이용한 터보프롭 항공기 추진시스템 성능해석 (Performance Analysis of Turboprop Aircraft Propulsion System by using Gasturb)

  • 최원;정인면;유재호;김지홍;이일우
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2009년도 제33회 추계학술대회논문집
    • /
    • pp.371-377
    • /
    • 2009
  • 터보프롭 항공기는 감속장치로 인한 출력한계 및 프로펠러로 인한 최대속도 한계 등으로 대형항공기로 거의 사용되지 않았으나 최근 경제적, 환경적 요인으로 수요가 증가하고 있다. 본 논문에서는 Pratt & Whitney 사의 PW127F 터보프롭 엔진과 Hamilton Standard 사의 568F 프로펠러로 구성된 ATR72-500 중형 터보프롭 항공기의 추진시스템을 Gasturb11 소프트웨어를 이용하여 모델링하였으며 성능해석 결과 추진시스템 모델이 성공적으로 구성되었음을 보여주었다.

  • PDF

Performance of Contra-Rotating Propellers for Stratospheric Airships

  • Tang, Zhihao;Liu, Peiqing;Sun, Jingwei;Chen, Yaxi;Guo, Hao;Li, Guangchao
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제16권4호
    • /
    • pp.485-492
    • /
    • 2015
  • Small advance ratio and low Reynolds number of stratospheric propulsion system bring lots of challenges to the design of propellers. Contra-rotating propeller configuration is proposed to improve the propulsion efficiency. In this paper, the feasibility of contra-rotating propeller for stratospheric airship has been assessed and its performance has been investigated by wind tunnel tests. The experimental results indicate, at relatively low Reynolds number, although the advance ratio is fixed, the performance of propellers is different with variation of Reynolds number. Moreover, at the same Reynolds number, the efficiency of contra-rotating propeller achieved appears to be a few percent greater than that for a standard conventional propulsion system. It can be concluded that contra-rotating propellers would be an efficient means to improve the performance of stratospheric airship propulsion system.

HILS 기반의 수중체 냉각 시스템 개선 (Improvement of Submarine Cooling System using HILS Simulation)

  • 정성영;오진석
    • 대한조선학회논문집
    • /
    • 제49권5호
    • /
    • pp.376-383
    • /
    • 2012
  • Owing to rapid development of power device and inverters, most of submarines adopt an eletric propulsion system. Although PMPM(Permanent Magnet Propulsion Motor) propulsion system has relatively higher power, energy conversion efficiency and smaller volume than engine propulsion system, it also produces large amount of heat due to current flowing inside motor coils and change of magnetic field induced by iron core. The produced heat in stator and inverter largely affects motor efficiency and bearing lubrication and causes thermal aging while the system is on operation. So, we analyze the existing cooling system and submarine ESS (Energy Saving System) cooling system whose power consumption is reduced. HILS(Hardware In the Loop System) technique is used for the modelling of the submarine cooling system. To confirm the ESS cooling system characteristic, HILS is simulated using LabVIEW with hardware. As a result, the ESS cooling system has the characteristic of better temperature stability and less power consumption than the existing one.

편재된 비대칭형 전류고정날개 추진시스템 설계에 관한 연구 (A Study on the Design of a Biased Asymmetric Preswirl Stator Propulsion System)

  • 강용덕;김문찬;전호환
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.32-36
    • /
    • 2003
  • This paper deals with a theoretical method for the design of a biased asymmetric preswirl stator propulsion system which has been used to increase efficiency by the recovery of a propeller slipstream rotational energy by the counter rotating flow of a stator. In the case of full slow-speed ship, the upward flow is generated at the propeller plane by the after body hull form. The generated upward flow cancells the rotating flow of the propeller at the starboard part while it increases at port part. A biased asymmetric preswirl stator propulsion system consists of three blades at the port and one blade at the starboard which can recover the biased rotating flow effectively. This paper provides the design concept which gives more simple and a high degree of efficiency. The model tests for the designed compound propulsion system will be carried out later.

  • PDF

도시철도차량 추진제어시스템 고찰 및 개선에 대한 연구 (The Study about Development and Consideration of Urban Railroad Vehicle Propulsion Control Device)

  • 이미정;이형우;하종은
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.2323-2328
    • /
    • 2011
  • There have been many changes in Subway train types since SeoulMetro opened the Line No.1 in 1974. Propulsion control device has changed many times following the generations of control method from resistance control method which uses large resistor for the traction motor control to chopping control which uses power semiconductors and finally to inverter control. Railroad vehicle propulsion control device refers to devices such as converter/inverter which supply power for subway operation, power conversion equipment like small switching-mode power supply and traction motor. In this paper, we will analyze every part of railroad vehicle propulsion control device of SeoulMetro so we can find problems in the subway operation. And we will present propulsion control device model which makes minimized failures, efficient maintenance possible when replacing railroad vehicle later. By doing this, we hope to ensure stability and improve energy efficiency to the top.

  • PDF