• Title/Summary/Keyword: Prophet

Search Result 47, Processing Time 0.02 seconds

Throughput Prediction of Pohang Port using Time Series Data: Application of SARIMA, Prophet and Neural Prophet (시계열 데이터를 활용한 포항항 물동량 예측: SARIMA, Prophet, Neural Prophet의 적용)

  • Jin-Ho Oh;Jeong-Won Choi;Tae-Hyun Kang;Young-Joon Seo;Dong-Wook Kwak
    • Korea Trade Review
    • /
    • v.47 no.6
    • /
    • pp.291-305
    • /
    • 2022
  • In this study, the volume of Pohang Port was predicted. All cargo of Pohang port, iron ore, steel, and bituminous coals were selected as prediction targets. SARIMA, Prophet, and Neural Prophet were used as analysis methods. The predictive power of each model was verified, and a predictive model with high performance was used to predict the volume of goods in Pohang port. As a result of the analysis, it was found that Neural Prophet showed the highest performance in all predictive power. As a result of predicting the future volume of goods until August 2027 using Neural Prophet, it was found that the volume of all items in Pohang port was decreasing. In particular, it was analyzed that the decline in steel cargo was steep. In order to increase the volume of cargo at Pohang port, it is necessary to diversify the cargo handled at Pohang port and check the policy of increasing the volume of cargo.

Short-and Mid-term Power Consumption Forecasting using Prophet and GRU (Prophet와 GRU을 이용하여 단중기 전력소비량 예측)

  • Nam Rye Son;Eun Ju Kang
    • Smart Media Journal
    • /
    • v.12 no.11
    • /
    • pp.18-26
    • /
    • 2023
  • The building energy management system (BEMS), a system designed to efficiently manage energy production and consumption, aims to address the variable nature of power consumption within buildings due to their physical characteristics, necessitating stable power supply. In this context, accurate prediction of building energy consumption becomes crucial for ensuring reliable power delivery. Recent research has explored various approaches, including time series analysis, statistical analysis, and artificial intelligence, to predict power consumption. This paper analyzes the strengths and weaknesses of the Prophet model, choosing to utilize its advantages such as growth, seasonality, and holiday patterns, while also addressing its limitations related to data complexity and external variables like climatic data. To overcome these challenges, the paper proposes an algorithm that combines the Prophet model's strengths with the gated recurrent unit (GRU) to forecast short-term (2 days) and medium-term (7 days, 15 days, 30 days) building energy consumption. Experimental results demonstrate the superior performance of the proposed approach compared to conventional GRU and Prophet models.

Development and Verification of an AI Model for Melon Import Prediction

  • KHOEURN SAKSONITA;Jungsung Ha;Wan-Sup Cho;Phyoungjung Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.7
    • /
    • pp.29-37
    • /
    • 2023
  • Due to climate change, interest in crop production and distribution is increasing, and attempts are being made to use bigdata and AI to predict production volume and control shipments and distribution stages. Prediction of agricultural product imports not only affects prices, but also controls shipments of farms and distributions of distribution companies, so it is important information for establishing marketing strategies. In this paper, we create an artificial intelligence prediction model that predicts the future import volume based on the wholesale market melon import volume data disclosed by the agricultural statistics information system and evaluate its accuracy. We create prediction models using three models: the Neural Prophet technique, the Ensembled Neural Prophet model, and the GRU model. As a result of evaluating the performance of the model by comparing two major indicators, MAE and RMSE, the Ensembled Neural Prophet model predicted the most accurately, and the GRU model also showed similar performance to the ensemble model. The model developed in this study is published on the web and used in the field for 1 year and 6 months, and is used to predict melon production in the near future and to establish marketing and distribution strategies.

Cryptocurrency Auto-trading Program Development Using Prophet Algorithm (Prophet 알고리즘을 활용한 가상화폐의 자동 매매 프로그램 개발)

  • Hyun-Sun Kim;Jae Joon Ahn
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.1
    • /
    • pp.105-111
    • /
    • 2023
  • Recently, research on prediction algorithms using deep learning has been actively conducted. In addition, algorithmic trading (auto-trading) based on predictive power of artificial intelligence is also becoming one of the main investment methods in stock trading field, building its own history. Since the possibility of human error is blocked at source and traded mechanically according to the conditions, it is likely to be more profitable than humans in the long run. In particular, for the virtual currency market at least for now, unlike stocks, it is not possible to evaluate the intrinsic value of each cryptocurrencies. So it is far effective to approach them with technical analysis and cryptocurrency market might be the field that the performance of algorithmic trading can be maximized. Currently, the most commonly used artificial intelligence method for financial time series data analysis and forecasting is Long short-term memory(LSTM). However, even t4he LSTM also has deficiencies which constrain its widespread use. Therefore, many improvements are needed in the design of forecasting and investment algorithms in order to increase its utilization in actual investment situations. Meanwhile, Prophet, an artificial intelligence algorithm developed by Facebook (META) in 2017, is used to predict stock and cryptocurrency prices with high prediction accuracy. In particular, it is evaluated that Prophet predicts the price of virtual currencies better than that of stocks. In this study, we aim to show Prophet's virtual currency price prediction accuracy is higher than existing deep learning-based time series prediction method. In addition, we execute mock investment with Prophet predicted value. Evaluating the final value at the end of the investment, most of tested coins exceeded the initial investment recording a positive profit. In future research, we continue to test other coins to determine whether there is a significant difference in the predictive power by coin and therefore can establish investment strategies.

Research on influence by Prophet's house in general typologic of the early mosque (초기 모스크 건축의 보편적 유형 형성에 '예언자의 집'이 미친 영향에 관한 연구)

  • Sim, Bok-Gi
    • Korean Institute of Interior Design Journal
    • /
    • v.19 no.3
    • /
    • pp.13-21
    • /
    • 2010
  • Early mosque architecture is time that islam attempts fixing since hjira by Muhammad. Before Umayyad dynasty is established a country since islam occurrence, islamic influence was not extended much and stayed in Mecca area. Of course, when is Patriarchal Caliphate period, although there was part territorial expansion, was in existing islam influence still. Regular territorial expansion to Umayyad dynasty several influences and religious conflict happen. Change about islamic architecture occurred much fatally. Therefore, can find islamic archetype about islamic architecture until Prophet Muhammad period and Patriarchal Caliphate period. Also, Muhammad that is Islamic originator participated to mosque architecture directly in life. Can understand philosophy about islamic architecture that Muhammad seeks in mosque architecture. Was age that seek Muhammad's philosophy department religious succession strongly to Patriarchal Caliphate period. Therefore, can understand role of religion, mosque architecture's meaning and role that seek in Islam. It was just before that early mosque architecture receives effect of conquest area or the surrounding country. Therefore, characteristic of mosque received much effect of Prophet Muhammad and qur'an. Do construction according to qur'an's notice based on Prophet's house's function to early mosque. qur'an is no direct delineation as form or architecture element. qur'an refers thing about spiritual aspect or function about special quality of mosque, role etc..

Diabetes Prediction with the TCN-Prophet model using UCI Machine Learning Repository (UCI machine learning repository 사용한 TCN-Prophet 기반 당뇨병 예측 )

  • Tan Tianbo;Inwhee Joe
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.325-327
    • /
    • 2023
  • Diabetes is a common chronic disease that threatens human life and health, and its prevalence remains high because its mechanisms are complex, further its etiology remains unclear. According to the International Diabetes Federation (IDF), there are 463 million cases of diabetes in adults worldwide, and the number is growing. This study aims to explore the potential influencing factors of diabetes by learning data from the UCI diabetes dataset, which is a multivariate time series dataset. In this paper we propose the TCN-prophet model for diabetes. The experimental results show that the prediction of insulin concentration by the TCN-prophet model provides a high degree of consistency, compared to the existing LSTM model.

Research on a system for determining the timing of shipment based on artificial intelligence-based crop maturity checks and consideration of fluctuations in agricultural product market prices (인공지능 기반 농작물 성숙도 체크와 농산물 시장가격 변동을 고려한 출하시기 결정시스템 연구)

  • LI YU;NamHo Kim
    • Smart Media Journal
    • /
    • v.13 no.1
    • /
    • pp.9-17
    • /
    • 2024
  • This study aims to develop an integrated agricultural distribution network management system to improve the quality, profit, and decision-making efficiency of agricultural products. We adopt two key techniques: crop maturity detection based on the YOLOX target detection algorithm and market price prediction based on the Prophet model. By training the target detection model, it was possible to accurately identify crops of various maturity stages, thereby optimizing the shipment timing. At the same time, by collecting historical market price data and predicting prices using the Prophet model, we provided reliable price trend information to shipping decision makers. According to the results of the study, it was found that the performance of the model considering the holiday factor was significantly superior to that of the model that did not, proving that the effect of the holiday on the price was strong. The system provides strong tools and decision support to farmers and agricultural distribution managers, helping them make smart decisions during various seasons and holidays. In addition, it is possible to optimize the distribution network of agricultural products and improve the quality and profit of agricultural products.

Deep Learning-Based Spatio-Temporal Earthquake Prediction (딥러닝 기반의 시공간 지진 예측)

  • Kounghoon Nam;Jong-Tae Kim;Seong-Cheol Park;Chang Ju Lee;Soo-Jin Kim;Chang Oh Choo;Gyo-Cheol Jeong
    • The Journal of Engineering Geology
    • /
    • v.33 no.1
    • /
    • pp.1-13
    • /
    • 2023
  • Predicting earthquakes is difficult due to the complexity of the systems underlying tectonic phenomena and incomplete understanding of the interactions among tectonic settings, tectonic stress, and crustal components. The Korean Peninsula is located in a stable intraplate region with a low average seismicity of M 2.3. As public interest in the earthquake grows, we analyzed earthquakes on the Korean Peninsula by attempting to predict spatio-temporal earthquake patterns and magnitudes using Facebook's Prophet model based on deep learning, and here we discuss seismic distribution zones using DBSCAN, a cluster analysis method. The Prophet model predicts future earthquakes in Chungcheongbuk-do, Gyeonggi-do, Seoul, and Gyeongsangbuk-do.

Infrastructure Anomaly Analysis for Data-center Failure Prevention: Based on RRCF and Prophet Ensemble Analysis (데이터센터 장애 예방을 위한 인프라 이상징후 분석: RRCF와 Prophet Ensemble 분석 기반)

  • Hyun-Jong Kim;Sung-Keun Kim;Byoung-Whan Chun;Kyong-Bog, Jin;Seung-Jeong Yang
    • The Journal of Bigdata
    • /
    • v.7 no.1
    • /
    • pp.113-124
    • /
    • 2022
  • Various methods using machine learning and big data have been applied to prevent failures in Data Centers. However, there are many limitations to referencing individual equipment-based performance indicators or to being practically utilized as an approach that does not consider the infrastructure operating environment. In this study, the performance indicators of individual infrastructure equipment are integrated monitoring and the performance indicators of various equipment are segmented and graded to make a single numerical value. Data pre-processing based on experience in infrastructure operation. And an ensemble of RRCF (Robust Random Cut Forest) analysis and Prophet analysis model led to reliable analysis results in detecting anomalies. A failure analysis system was implemented to facilitate the use of Data Center operators. It can provide a preemptive response to Data Center failures and an appropriate tuning time.

A Method for Protein Identification Based on MS/MS using Probabilistic Graphical Models (확률그래프모델을 이용한 MS/MS 기반 단백질 동정 기법)

  • Li, Hong-Lan;Hwang, Kyu-Baek
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06b
    • /
    • pp.426-428
    • /
    • 2012
  • In order to identify proteins that are present in biological samples, these samples are separated and analyzed under the sequential procedure as follows: protein purification and digestion, peptide fragmentation by tandem mass spectrometry (MS/MS) which breaks peptides into fragments, peptide identification, and protein identification. One of the widely used methods for protein identification is based on probabilistic approaches such as ProteinProphet and BaysPro. However, they do not consider the difference in peptide identification probabilities according to their length. Here, we propose a probabilistic graphical model-based approach to protein identification from MS/MS data considering peptide identification probabilities, number of sibling peptides, and peptide length. We compared our approach with ProteinProphet using a yeast MS/MS dataset. As a result, our model identified 27 more proteins than ProteinProphet at 1% of FDR (false discovery rate), confirming the importance of peptide length information in protein identification.