In this study, the volume of Pohang Port was predicted. All cargo of Pohang port, iron ore, steel, and bituminous coals were selected as prediction targets. SARIMA, Prophet, and Neural Prophet were used as analysis methods. The predictive power of each model was verified, and a predictive model with high performance was used to predict the volume of goods in Pohang port. As a result of the analysis, it was found that Neural Prophet showed the highest performance in all predictive power. As a result of predicting the future volume of goods until August 2027 using Neural Prophet, it was found that the volume of all items in Pohang port was decreasing. In particular, it was analyzed that the decline in steel cargo was steep. In order to increase the volume of cargo at Pohang port, it is necessary to diversify the cargo handled at Pohang port and check the policy of increasing the volume of cargo.
빌딩에너지관리시스템(BEMS: Building Energy Management System)은 생산 및 소비되는 에너지를 효율적으로 관리하는 시스템이다. 그러나 건물 내 전력소비는 물리적인 특성상으로 인해 생산 및 소비가 일정하지 않아 안정적인 전력 공급이 필수적이다. 이에 따라 건물의 안정적인 전력 공급을 위해서는 정확한 건물 내 전력 소비 예측이 중요하다. 최근에는 시계열분석, 통계분석, 인공지능 등 다양한 방법을 이용하여 전력소비예측에 관한 연구가 진행되고 있다. 본 논문은 Prophet 모델의 장점과 단점을 분석하여 장점인 growth, seasonality, holidays를 선택하였고, Prophet 모델의 단점인 데이터의 복잡성과 외부변수(기후 데이터)의 제한성을 해결하기 위하여 GRU을 조합하여 단기(2일) 및 중기(7일, 15일, 30일) 전력소비량 예측 알고리즘을 제안한다. 실험결과, 제안한 방법은 기존 GRU 및 Prophet 모델보다 성능이 우수하였다.
KHOEURN SAKSONITA;Jungsung Ha;Wan-Sup Cho;Phyoungjung Kim
한국컴퓨터정보학회논문지
/
제28권7호
/
pp.29-37
/
2023
기후변화로 인해 농작물 생산과 유통에 관한 관심이 증대되고 있고, 빅데이터와 AI를 활용한 생산량 예측을 통해 농가의 출하량 조절과 유통단계의 조절에 활용하는 시도가 이루어지고 있다. 농산물 반입량 예측은 가격에 영향을 미칠 뿐 아니라 농가의 출하량과 유통회사의 유통량 조절을 할 수 있으므로 마케팅 전략을 수립하는데 중요한 정보이다. 본 연구에서는 농업 통계 정보 시스템에서 공개한 도매시장 참외 반입량 데이터를 기반으로 미래의 반입량을 예측하는 인공지능 예측 모델을 생성하고 정확도를 평가한다. 우리는 Neural Prophet 기법과 Ensembled Neural Prophet 모델 그리고 GRU 모델 등 세 가지 모델을 사용하여 예측 모델을 생성한다. 모델의 성능은 MAE와 RMSE라는 두 가지 주요 지표를 비교하여 평가한 결과 Ensembled Neural Prophet 모델이 가장 정확하게 예측하였으며, GRU 모델도 앙상블 모델과 유사한 성능을 보여주고 있다. 본 연구에서 개발된 모형은 웹에 publish 되어 현장에서 1년 6개월 동안 사용하고 있으며, 가까운 미래의 참외 생산량을 예측하고, 마케팅 및 유통전략을 수립하는 데 활용되고 있다.
Recently, research on prediction algorithms using deep learning has been actively conducted. In addition, algorithmic trading (auto-trading) based on predictive power of artificial intelligence is also becoming one of the main investment methods in stock trading field, building its own history. Since the possibility of human error is blocked at source and traded mechanically according to the conditions, it is likely to be more profitable than humans in the long run. In particular, for the virtual currency market at least for now, unlike stocks, it is not possible to evaluate the intrinsic value of each cryptocurrencies. So it is far effective to approach them with technical analysis and cryptocurrency market might be the field that the performance of algorithmic trading can be maximized. Currently, the most commonly used artificial intelligence method for financial time series data analysis and forecasting is Long short-term memory(LSTM). However, even t4he LSTM also has deficiencies which constrain its widespread use. Therefore, many improvements are needed in the design of forecasting and investment algorithms in order to increase its utilization in actual investment situations. Meanwhile, Prophet, an artificial intelligence algorithm developed by Facebook (META) in 2017, is used to predict stock and cryptocurrency prices with high prediction accuracy. In particular, it is evaluated that Prophet predicts the price of virtual currencies better than that of stocks. In this study, we aim to show Prophet's virtual currency price prediction accuracy is higher than existing deep learning-based time series prediction method. In addition, we execute mock investment with Prophet predicted value. Evaluating the final value at the end of the investment, most of tested coins exceeded the initial investment recording a positive profit. In future research, we continue to test other coins to determine whether there is a significant difference in the predictive power by coin and therefore can establish investment strategies.
Early mosque architecture is time that islam attempts fixing since hjira by Muhammad. Before Umayyad dynasty is established a country since islam occurrence, islamic influence was not extended much and stayed in Mecca area. Of course, when is Patriarchal Caliphate period, although there was part territorial expansion, was in existing islam influence still. Regular territorial expansion to Umayyad dynasty several influences and religious conflict happen. Change about islamic architecture occurred much fatally. Therefore, can find islamic archetype about islamic architecture until Prophet Muhammad period and Patriarchal Caliphate period. Also, Muhammad that is Islamic originator participated to mosque architecture directly in life. Can understand philosophy about islamic architecture that Muhammad seeks in mosque architecture. Was age that seek Muhammad's philosophy department religious succession strongly to Patriarchal Caliphate period. Therefore, can understand role of religion, mosque architecture's meaning and role that seek in Islam. It was just before that early mosque architecture receives effect of conquest area or the surrounding country. Therefore, characteristic of mosque received much effect of Prophet Muhammad and qur'an. Do construction according to qur'an's notice based on Prophet's house's function to early mosque. qur'an is no direct delineation as form or architecture element. qur'an refers thing about spiritual aspect or function about special quality of mosque, role etc..
Diabetes is a common chronic disease that threatens human life and health, and its prevalence remains high because its mechanisms are complex, further its etiology remains unclear. According to the International Diabetes Federation (IDF), there are 463 million cases of diabetes in adults worldwide, and the number is growing. This study aims to explore the potential influencing factors of diabetes by learning data from the UCI diabetes dataset, which is a multivariate time series dataset. In this paper we propose the TCN-prophet model for diabetes. The experimental results show that the prediction of insulin concentration by the TCN-prophet model provides a high degree of consistency, compared to the existing LSTM model.
본 연구는 농산물의 품질, 수익 및 의사결정 효율성을 향상시키기 위한 통합적인 농업 유통망 관리시스템을 개발하는 데 목적이 있다. 우리는 YOLOX 객체 탐지 알고리즘을 기반으로 한 농작물 성숙도 체크와 Prophet 모델을 기반으로 한 시장 가격 예측이라는 두 가지 핵심 기술을 채택하였다. 객체 탐지 모델을 훈련함으로써, 다양한 성숙도 단계의 농작물을 정확하게 식별할 수 있게 되어 출하 시기를 최적화할 수 있었다. 동시에, 과거 시장 가격 데이터를 수집하고 Prophet 모델을 사용하여 가격을 예측함으로써, 출하시기 결정권자들에게 신뢰할 수 있는 가격 추세 정보를 제공하였다. 연구 결과에 따르면, 휴일 요소를 고려한 모델의 성능이 그렇지 않은 모델보다 두드러지게 우수하다는 것이 밝혀져서 휴일이 가격에 미치는 영향이 강함을 증명하였다. 이 시스템은 농민 및 농산물 유통 관리자에게 강력한 도구 및 의사결정 지원을 제공하여, 다양한 계절과 휴일 기간 동안 현명한 의사결정을 내릴 수 있게 도와준다. 아울러, 농산물 유통망을 최적화하고 농산물의 품질과 수익을 향상시킬 수 있다.
지진은 지체 구조, 지구조 응력, 지각 성분 및 구성 요소 간의 상호 작용을 통해 발생하는 복잡한 현상으로 이해하기 매우 어려운 시스템이기 때문에 예측하기가 쉽지 않다. 우리나라는 평균 M 2.3의 비교적 안전한 지역으로 볼 수 있으나 지진에 대한 대중의 관심이 높아짐에 따라, 한반도의 지진현상을 분석하기 위하여 딥러닝 기반의 Facebook's Prophet 모델을 이용한 시간에 따른 지진패턴의 변화 및 공간과 규모에 따른 지진예측을 시도하였다. 또한, 진앙분포도 군집분석 방법인 DBSCAN과 비교 및 토의하였다. Prophet 지진 예측 모델링 결과 향후 경상북도뿐만 아니라 충청북도, 경기도 및 서울권역에서 지진이 발생할 것으로 예측되었다.
데이터센터의 장애 예방을 위해 머신러닝과 빅데이터를 활용한 다양한 방법들이 적용되어 왔다. 그러나 개별 장비 기반의 성능지표를 참조하거나, 인프라 운영환경을 고려하지 않은 접근방법으로 실제 활용되는 데에는 많은 한계가 있었다. 이에 본 연구에서는 개별 인프라 장비들의 성능지표를 통합 모니터링하며, 다양한 장비들의 성능지표를 구간화, 등급화 하여 단일수치화를 진행한다. 인프라 운영에 대한 경험치 기반으로 데이터 전처리를 수행하며, RRCF(Robust Random Cut Forest)분석과 Prophet 분석 모델을 앙상블하여 이상징후 검출에 신뢰도 있는 분석결과를 도출하였다. 데이터센터 내 운영담당자들의 접근을 용이하게 하기 위해 장애분석시스템을 구현하여 데이터센터 장애의 선제 대응과 적정한 튜닝시점을 제시할 수 있다.
In order to identify proteins that are present in biological samples, these samples are separated and analyzed under the sequential procedure as follows: protein purification and digestion, peptide fragmentation by tandem mass spectrometry (MS/MS) which breaks peptides into fragments, peptide identification, and protein identification. One of the widely used methods for protein identification is based on probabilistic approaches such as ProteinProphet and BaysPro. However, they do not consider the difference in peptide identification probabilities according to their length. Here, we propose a probabilistic graphical model-based approach to protein identification from MS/MS data considering peptide identification probabilities, number of sibling peptides, and peptide length. We compared our approach with ProteinProphet using a yeast MS/MS dataset. As a result, our model identified 27 more proteins than ProteinProphet at 1% of FDR (false discovery rate), confirming the importance of peptide length information in protein identification.
이메일무단수집거부
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.