• 제목/요약/키워드: Prophet

검색결과 47건 처리시간 0.026초

시계열 데이터를 활용한 포항항 물동량 예측: SARIMA, Prophet, Neural Prophet의 적용 (Throughput Prediction of Pohang Port using Time Series Data: Application of SARIMA, Prophet and Neural Prophet)

  • 오진호;최정원;강태현;서영준;곽동욱
    • 무역학회지
    • /
    • 제47권6호
    • /
    • pp.291-305
    • /
    • 2022
  • In this study, the volume of Pohang Port was predicted. All cargo of Pohang port, iron ore, steel, and bituminous coals were selected as prediction targets. SARIMA, Prophet, and Neural Prophet were used as analysis methods. The predictive power of each model was verified, and a predictive model with high performance was used to predict the volume of goods in Pohang port. As a result of the analysis, it was found that Neural Prophet showed the highest performance in all predictive power. As a result of predicting the future volume of goods until August 2027 using Neural Prophet, it was found that the volume of all items in Pohang port was decreasing. In particular, it was analyzed that the decline in steel cargo was steep. In order to increase the volume of cargo at Pohang port, it is necessary to diversify the cargo handled at Pohang port and check the policy of increasing the volume of cargo.

Prophet와 GRU을 이용하여 단중기 전력소비량 예측 (Short-and Mid-term Power Consumption Forecasting using Prophet and GRU)

  • 손남례;강은주
    • 스마트미디어저널
    • /
    • 제12권11호
    • /
    • pp.18-26
    • /
    • 2023
  • 빌딩에너지관리시스템(BEMS: Building Energy Management System)은 생산 및 소비되는 에너지를 효율적으로 관리하는 시스템이다. 그러나 건물 내 전력소비는 물리적인 특성상으로 인해 생산 및 소비가 일정하지 않아 안정적인 전력 공급이 필수적이다. 이에 따라 건물의 안정적인 전력 공급을 위해서는 정확한 건물 내 전력 소비 예측이 중요하다. 최근에는 시계열분석, 통계분석, 인공지능 등 다양한 방법을 이용하여 전력소비예측에 관한 연구가 진행되고 있다. 본 논문은 Prophet 모델의 장점과 단점을 분석하여 장점인 growth, seasonality, holidays를 선택하였고, Prophet 모델의 단점인 데이터의 복잡성과 외부변수(기후 데이터)의 제한성을 해결하기 위하여 GRU을 조합하여 단기(2일) 및 중기(7일, 15일, 30일) 전력소비량 예측 알고리즘을 제안한다. 실험결과, 제안한 방법은 기존 GRU 및 Prophet 모델보다 성능이 우수하였다.

Development and Verification of an AI Model for Melon Import Prediction

  • KHOEURN SAKSONITA;Jungsung Ha;Wan-Sup Cho;Phyoungjung Kim
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권7호
    • /
    • pp.29-37
    • /
    • 2023
  • 기후변화로 인해 농작물 생산과 유통에 관한 관심이 증대되고 있고, 빅데이터와 AI를 활용한 생산량 예측을 통해 농가의 출하량 조절과 유통단계의 조절에 활용하는 시도가 이루어지고 있다. 농산물 반입량 예측은 가격에 영향을 미칠 뿐 아니라 농가의 출하량과 유통회사의 유통량 조절을 할 수 있으므로 마케팅 전략을 수립하는데 중요한 정보이다. 본 연구에서는 농업 통계 정보 시스템에서 공개한 도매시장 참외 반입량 데이터를 기반으로 미래의 반입량을 예측하는 인공지능 예측 모델을 생성하고 정확도를 평가한다. 우리는 Neural Prophet 기법과 Ensembled Neural Prophet 모델 그리고 GRU 모델 등 세 가지 모델을 사용하여 예측 모델을 생성한다. 모델의 성능은 MAE와 RMSE라는 두 가지 주요 지표를 비교하여 평가한 결과 Ensembled Neural Prophet 모델이 가장 정확하게 예측하였으며, GRU 모델도 앙상블 모델과 유사한 성능을 보여주고 있다. 본 연구에서 개발된 모형은 웹에 publish 되어 현장에서 1년 6개월 동안 사용하고 있으며, 가까운 미래의 참외 생산량을 예측하고, 마케팅 및 유통전략을 수립하는 데 활용되고 있다.

Prophet 알고리즘을 활용한 가상화폐의 자동 매매 프로그램 개발 (Cryptocurrency Auto-trading Program Development Using Prophet Algorithm)

  • 김현선;안재준
    • 산업경영시스템학회지
    • /
    • 제46권1호
    • /
    • pp.105-111
    • /
    • 2023
  • Recently, research on prediction algorithms using deep learning has been actively conducted. In addition, algorithmic trading (auto-trading) based on predictive power of artificial intelligence is also becoming one of the main investment methods in stock trading field, building its own history. Since the possibility of human error is blocked at source and traded mechanically according to the conditions, it is likely to be more profitable than humans in the long run. In particular, for the virtual currency market at least for now, unlike stocks, it is not possible to evaluate the intrinsic value of each cryptocurrencies. So it is far effective to approach them with technical analysis and cryptocurrency market might be the field that the performance of algorithmic trading can be maximized. Currently, the most commonly used artificial intelligence method for financial time series data analysis and forecasting is Long short-term memory(LSTM). However, even t4he LSTM also has deficiencies which constrain its widespread use. Therefore, many improvements are needed in the design of forecasting and investment algorithms in order to increase its utilization in actual investment situations. Meanwhile, Prophet, an artificial intelligence algorithm developed by Facebook (META) in 2017, is used to predict stock and cryptocurrency prices with high prediction accuracy. In particular, it is evaluated that Prophet predicts the price of virtual currencies better than that of stocks. In this study, we aim to show Prophet's virtual currency price prediction accuracy is higher than existing deep learning-based time series prediction method. In addition, we execute mock investment with Prophet predicted value. Evaluating the final value at the end of the investment, most of tested coins exceeded the initial investment recording a positive profit. In future research, we continue to test other coins to determine whether there is a significant difference in the predictive power by coin and therefore can establish investment strategies.

초기 모스크 건축의 보편적 유형 형성에 '예언자의 집'이 미친 영향에 관한 연구 (Research on influence by Prophet's house in general typologic of the early mosque)

  • 심복기
    • 한국실내디자인학회논문집
    • /
    • 제19권3호
    • /
    • pp.13-21
    • /
    • 2010
  • Early mosque architecture is time that islam attempts fixing since hjira by Muhammad. Before Umayyad dynasty is established a country since islam occurrence, islamic influence was not extended much and stayed in Mecca area. Of course, when is Patriarchal Caliphate period, although there was part territorial expansion, was in existing islam influence still. Regular territorial expansion to Umayyad dynasty several influences and religious conflict happen. Change about islamic architecture occurred much fatally. Therefore, can find islamic archetype about islamic architecture until Prophet Muhammad period and Patriarchal Caliphate period. Also, Muhammad that is Islamic originator participated to mosque architecture directly in life. Can understand philosophy about islamic architecture that Muhammad seeks in mosque architecture. Was age that seek Muhammad's philosophy department religious succession strongly to Patriarchal Caliphate period. Therefore, can understand role of religion, mosque architecture's meaning and role that seek in Islam. It was just before that early mosque architecture receives effect of conquest area or the surrounding country. Therefore, characteristic of mosque received much effect of Prophet Muhammad and qur'an. Do construction according to qur'an's notice based on Prophet's house's function to early mosque. qur'an is no direct delineation as form or architecture element. qur'an refers thing about spiritual aspect or function about special quality of mosque, role etc..

UCI machine learning repository 사용한 TCN-Prophet 기반 당뇨병 예측 (Diabetes Prediction with the TCN-Prophet model using UCI Machine Learning Repository)

  • 탄텐보;조인휘
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 춘계학술발표대회
    • /
    • pp.325-327
    • /
    • 2023
  • Diabetes is a common chronic disease that threatens human life and health, and its prevalence remains high because its mechanisms are complex, further its etiology remains unclear. According to the International Diabetes Federation (IDF), there are 463 million cases of diabetes in adults worldwide, and the number is growing. This study aims to explore the potential influencing factors of diabetes by learning data from the UCI diabetes dataset, which is a multivariate time series dataset. In this paper we propose the TCN-prophet model for diabetes. The experimental results show that the prediction of insulin concentration by the TCN-prophet model provides a high degree of consistency, compared to the existing LSTM model.

인공지능 기반 농작물 성숙도 체크와 농산물 시장가격 변동을 고려한 출하시기 결정시스템 연구 (Research on a system for determining the timing of shipment based on artificial intelligence-based crop maturity checks and consideration of fluctuations in agricultural product market prices)

  • 위리;김남호
    • 스마트미디어저널
    • /
    • 제13권1호
    • /
    • pp.9-17
    • /
    • 2024
  • 본 연구는 농산물의 품질, 수익 및 의사결정 효율성을 향상시키기 위한 통합적인 농업 유통망 관리시스템을 개발하는 데 목적이 있다. 우리는 YOLOX 객체 탐지 알고리즘을 기반으로 한 농작물 성숙도 체크와 Prophet 모델을 기반으로 한 시장 가격 예측이라는 두 가지 핵심 기술을 채택하였다. 객체 탐지 모델을 훈련함으로써, 다양한 성숙도 단계의 농작물을 정확하게 식별할 수 있게 되어 출하 시기를 최적화할 수 있었다. 동시에, 과거 시장 가격 데이터를 수집하고 Prophet 모델을 사용하여 가격을 예측함으로써, 출하시기 결정권자들에게 신뢰할 수 있는 가격 추세 정보를 제공하였다. 연구 결과에 따르면, 휴일 요소를 고려한 모델의 성능이 그렇지 않은 모델보다 두드러지게 우수하다는 것이 밝혀져서 휴일이 가격에 미치는 영향이 강함을 증명하였다. 이 시스템은 농민 및 농산물 유통 관리자에게 강력한 도구 및 의사결정 지원을 제공하여, 다양한 계절과 휴일 기간 동안 현명한 의사결정을 내릴 수 있게 도와준다. 아울러, 농산물 유통망을 최적화하고 농산물의 품질과 수익을 향상시킬 수 있다.

딥러닝 기반의 시공간 지진 예측 (Deep Learning-Based Spatio-Temporal Earthquake Prediction)

  • 남경훈;김종태;박성철;이창주;김수진;추창오;정교철
    • 지질공학
    • /
    • 제33권1호
    • /
    • pp.1-13
    • /
    • 2023
  • 지진은 지체 구조, 지구조 응력, 지각 성분 및 구성 요소 간의 상호 작용을 통해 발생하는 복잡한 현상으로 이해하기 매우 어려운 시스템이기 때문에 예측하기가 쉽지 않다. 우리나라는 평균 M 2.3의 비교적 안전한 지역으로 볼 수 있으나 지진에 대한 대중의 관심이 높아짐에 따라, 한반도의 지진현상을 분석하기 위하여 딥러닝 기반의 Facebook's Prophet 모델을 이용한 시간에 따른 지진패턴의 변화 및 공간과 규모에 따른 지진예측을 시도하였다. 또한, 진앙분포도 군집분석 방법인 DBSCAN과 비교 및 토의하였다. Prophet 지진 예측 모델링 결과 향후 경상북도뿐만 아니라 충청북도, 경기도 및 서울권역에서 지진이 발생할 것으로 예측되었다.

데이터센터 장애 예방을 위한 인프라 이상징후 분석: RRCF와 Prophet Ensemble 분석 기반 (Infrastructure Anomaly Analysis for Data-center Failure Prevention: Based on RRCF and Prophet Ensemble Analysis)

  • 신현종;김성근;천병환;진경복;양승정
    • 한국빅데이터학회지
    • /
    • 제7권1호
    • /
    • pp.113-124
    • /
    • 2022
  • 데이터센터의 장애 예방을 위해 머신러닝과 빅데이터를 활용한 다양한 방법들이 적용되어 왔다. 그러나 개별 장비 기반의 성능지표를 참조하거나, 인프라 운영환경을 고려하지 않은 접근방법으로 실제 활용되는 데에는 많은 한계가 있었다. 이에 본 연구에서는 개별 인프라 장비들의 성능지표를 통합 모니터링하며, 다양한 장비들의 성능지표를 구간화, 등급화 하여 단일수치화를 진행한다. 인프라 운영에 대한 경험치 기반으로 데이터 전처리를 수행하며, RRCF(Robust Random Cut Forest)분석과 Prophet 분석 모델을 앙상블하여 이상징후 검출에 신뢰도 있는 분석결과를 도출하였다. 데이터센터 내 운영담당자들의 접근을 용이하게 하기 위해 장애분석시스템을 구현하여 데이터센터 장애의 선제 대응과 적정한 튜닝시점을 제시할 수 있다.

확률그래프모델을 이용한 MS/MS 기반 단백질 동정 기법 (A Method for Protein Identification Based on MS/MS using Probabilistic Graphical Models)

  • 이홍란;황규백
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2012년도 한국컴퓨터종합학술대회논문집 Vol.39 No.1(B)
    • /
    • pp.426-428
    • /
    • 2012
  • In order to identify proteins that are present in biological samples, these samples are separated and analyzed under the sequential procedure as follows: protein purification and digestion, peptide fragmentation by tandem mass spectrometry (MS/MS) which breaks peptides into fragments, peptide identification, and protein identification. One of the widely used methods for protein identification is based on probabilistic approaches such as ProteinProphet and BaysPro. However, they do not consider the difference in peptide identification probabilities according to their length. Here, we propose a probabilistic graphical model-based approach to protein identification from MS/MS data considering peptide identification probabilities, number of sibling peptides, and peptide length. We compared our approach with ProteinProphet using a yeast MS/MS dataset. As a result, our model identified 27 more proteins than ProteinProphet at 1% of FDR (false discovery rate), confirming the importance of peptide length information in protein identification.