• Title/Summary/Keyword: Propeller open water test

Search Result 52, Processing Time 0.016 seconds

An Experimental Study on the Effect of Adoption of Special Rudders on Course Stability of a Ship (특수타의 채택이 침로 안정성에 미치는 영향에 관한 실험적 연구)

  • Sohn, K.H.;Kim, J.H.;Kim, H.S.;Kim, Y.S.;Ha, M.K.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.3
    • /
    • pp.27-37
    • /
    • 1997
  • The paper deals with the effectiveness of various special rudders on course stability of a ship. We adopted five types of rudder, such as one normal rudder and four special rudders, which contain two rudders with concave and convex strips on sides respectively, one flapped rudder, and one rudder with end plates on tips. In the circulating water channel, model test was carried out for measuring lift characteristics of the rudders in open water. And various captive model tests were also carried out for measuring the experimental constants related with helm angle and steering in hull-propeller-rudder system. From the test results, the changes in manoeuvring hydrodynamic derivatives due to adoption of normal and special rudders were predicted. Then course stability performances of a ship with normal and special rudders were evaluated and discussed. As a result, it is clarified that the rudder with concave or convex strips and flapped rudder have no effect on course stability, while the rudder with end plates improves course stability with effect. The result in this study is expected to be used usefully when the course stability is in issue and has to be improved without amendment of hull design at initial design phase or after construction of a ship.

  • PDF

A Study on the Flow Analysis for KP505 Propeller Open Water Test (유체기기의 표면 금속코팅 적용에 따른 구조건전성 평가)

  • Lee, Han-Seop;Lim, Byung-Chul;Kim, Min-Tae;Lee, Beom-Soon;Park, Sang-Heup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.8
    • /
    • pp.23-28
    • /
    • 2019
  • The structural integrity of a surface metal coating was evaluated through numerical results to improve the efficiency and reduce the damage caused by cavitation in ships and marine plants. The goal was to ensure structural strength and performance, even if the thickness of the wing is reduced to reduce the weight of the material and surface coating. Analytical methods were used for four models: a non-coating model, one with the same thickness after coating, one with a thickness reduction of 3% after coating, and one with thickness reduction of 5% after coating. With a thickness reduction of 5% after coating, the stress was increased to 12%, and the safety factor was 0.99%, so the structural integrity was insufficient. However, a better material or a thicker coating could allow a sufficient safety factor to be secured. The structural integrity was improved by the coating, and even when the weight was reduced up to 5%, the structural integrity could be sufficiently secured due to the coating effect.