• 제목/요약/키워드: Propellant Feed-line

검색결과 5건 처리시간 0.022초

KSR-III 추진기관 추진제 공급배관 수치해석 (Numerical Analysis of KSR-III Main Propulsion System Feedlines)

  • 조인현;오승협;강선일;김용욱
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.276-281
    • /
    • 2001
  • The KSR-III Main Propulsion System configuration of the liquid oxygen (LOX) feed line is analyzed. This feed line includes a tighter radius and cavitation venturi for flow mass flow-rate passive control. There were concerns that these configurations might generate a great flow distortion at the engine interface. Also both the pressure drop at the feed line and any presence of separation area are a great concern according to the propellant flow. To resolve these issues, a computational fluid dynamic analysis was conducted to determine the flow field in the LOX feed lines.

  • PDF

인공위성 추진계통 관로내의 수격효과에 관한 실험적 연구 (An Experimental Study on Water-Hammer Effect for Spacecraft Propulsion System)

  • 권기철;이은상;박상민;강신재;노병준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.288-293
    • /
    • 2001
  • This paper presents the water-hammer effect due to the rapid opening and closing of isolation valve and thruster valve in the spacecraft propulsion system. The single propellant feed system was modeled to investigate the maximum peak pressure due to the water-hammer effect. The test parameters are tank supply pressure, shape and throat length of orifice and line length. Kerosene was used as the inert simulant propellant liquid instead of hydrazine. As downstream line length after isolation valve increased from 1.5 to 2.5m, the maximum line-filling water-hammer peak pressure decreased, but the average time interval between peak pressures increased. The maximum line-filling water-hammer peak pressure with orifice was lower than without orifice, and the maximum line-filling water-hammer peak pressure with orifice at the back of isolation valve was lower than with orifice in front of isolation valve. Without orifice, the maximum water-hammer peak pressure due to the rapid opening and closing of the thruster valve was about 126% of tank supply pressure. With orifice, it decreased. As orifice throat length increased, it decreased. The maximum water-hammer peak pressure due to the rapid closing of the thruster valve with converging-diverging orifice was lower than normal orifice. It was found that the orifice as a means of pressure drop was very effective to reduce the water hammer peak pressure at the thruster valve. The results of this study can be used for the design of spacecraft liquid propulsion feed system.

  • PDF

축방향 압력섭동에 의해 발생되는 저주파 수력학적 교란이 단일 스월 인젝터에 미치는 영향 분석 (Spray Characteristics of Simplex Swirl Injector with Low Hydrodynamic Disturbance Generated by Pressure Fluctuation in Feed Line)

  • 길태옥;김성혁;김현성;윤영빈
    • 한국분무공학회지
    • /
    • 제12권1호
    • /
    • pp.1-10
    • /
    • 2007
  • The low frequency combustion instability phenomena generated by pressure drop oscillation such as propellant shake in feed line are studied. To generate the flowrate oscillation by the pressure pulsation up to 400Hz without flow discontinuities and cavitations, a hydrodynamic mechanical pulsator of rotating disk type was produced. Injection pressure conditions are 5, 7 and 9 bar and pressure fluctuation frequency conditions are 0, 4, 6 and 8 Hz. When the injection pressure was oscillated by a mechanical pulsator, the spray shape was pulsated regularly. During the pulsated state of the spray with a mechanical pulsator, the spray characteristics, such as spray angle and liquid film thickness in orifice exit, were measured and compared with those in steady state without a mechanical pulsator. Though the mean injection pressure was fixed in the steady and fluctuating state, there were some differences in all measured values, i.e. liquid film thickness and spray cone angle, between both states.

  • PDF

액체로켓엔진 액체산소 고압 배관부 기본설계 (Basic Design of High Pressure LOx Lines for a Liquid Rocket Engine)

  • 문일윤;유재한;문인상
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2009년도 제33회 추계학술대회논문집
    • /
    • pp.107-110
    • /
    • 2009
  • 터보펌프방식 액체로켓엔진 개발의 일환으로 터보펌프 출구로부터 연소기와 가스발생기의 산화제 밸브에 이르는 액체산소 고압 배관부 기술개발모델(TDM)에 대한 기본설계를 수행하였다. 액체산소 고압 배관부는 직관, 곡관, 벨로우즈, 분기구, 오리피스, 플랜지 및 단열재로 구성되어 있다. 작동 환경, 무게, 제작성을 고려하여 소재를 선정하였다. 요구 유량과 차압 조건을 고려하여 유동해석을 통해 각 구성품의 크기와 위치를 선정하였다. 작동 온도와 최대 예상 작동 압력을 고려하여 각 구성품에 대한 기본 설계를 수행하였으며 구조해석을 통해 안전율을 평가하였다.

  • PDF

Experimental Study on Simplex Swirl Injector Dynamics with Varying Geometry

  • Chung, Yun-Jae;Khil, Tae-Ock;Yoon, Jung-Soo;Yoon, Young-Bin;Bazarov, V.
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제12권1호
    • /
    • pp.57-62
    • /
    • 2011
  • The effects of swirl chamber's diameter and length on injector's dynamic characteristics were investigated through an experimental study. A mechanical pulsator was installed in front of the manifold of a swirl injector which produces pressure oscillations in the feed line. Pressure in the manifold, liquid film thickness in the orifice and the pressure in the orifice were measured in order to understand the dynamic characteristic of the simplex swirl injector with varying geometry. A direct pressure measuring method (DPMM) was used to calculate the axial velocity of the propellant in the orifice and the mass flow rate through the orifice. These measured and calculated values were analyzed to observe the amplitude and phase differences between the input value in the manifold and the output values in the orifice. As a result, a phase-amplitude diagram was obtained which exhibits the injector's response to certain pressure fluctuation inputs. The mass flow rate was calculated by the DPMM and measured directly through the actual injection. The effect of mean manifold pressure change was insignificant with the frequency range of manifold pressure oscillation used in this experiment. Mass flow rate was measured with the variation of injector's geometries and amplitude of the mass flow rate was observed with geometry and pulsation frequency variation. It was confirmed that the swirl chamber diameter and length affect an injector's dynamic characteristics. Furthermore, the direction of geometry change for achieving dynamic stability in the injector was suggested.