• Title/Summary/Keyword: Propane flame

Search Result 157, Processing Time 0.018 seconds

Vibration Characteristics of Lean Premixed Flame Anchored by a Hydrogen Pilot Flame in a Tube (파일롯 화엄에 의해 고정된 관내 예혼합 화염의 진동 특성)

  • Guahk, Young-Tae;Oh, Kwang-Chul;Shin, Hyun-Dong
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.42-48
    • /
    • 2004
  • Lean laminar premixed propane and methane flames which were anchored by a hydrogen-pilot flame in a tube were investigated experimentally. The flame shapes were observed by varying mean velocity from 10cm/s to 140cm/s and equivalence ratio from 0.45 to 0.8. In this study, behaviors of flames are divided into five regions such as tail-out, flash-back, flickering, stable and vibrating flames with respect to the mean velocity and the equivalence ratio. Although the flames are unstable in both the flickering and the vibrating region, they have different characteristics such as the frequency, sound generation and creation process of flame curvature. The flickering region exists near the flammability limit and the flame flickers in a frequency of about 10Hz. When flame front is bended, the propane flame front is straightened and the methane flame front is bended more by thermo-diffusive instability. In the vibrating region, the flame vibrates emitting audible sound in a frequency of about 100Hz. In the boundary of vibrating region, the vibration of flame changes between two modes such as single frequency vibration and dual frequency vibration. Increase and decrease of vibration in each mode are determined by thermo-acoustic instability.

  • PDF

Characteristics of Methane Non-Premixed Multiple Jet Flames (메탄 비예혼합 상호작용 화염의 특성)

  • Kim Jin Hyun;Lee Byeong-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.3 s.234
    • /
    • pp.349-355
    • /
    • 2005
  • It has been reported that propane non-premixed interacting flames are not extinguished even in 210m/s if eight small nozzles are arranged along the imaginary circle of 40 ~ 72 times the diameter of single nozzle. In this research, experiments were extended to the methane flame. Nine nozzles were used- eight was evenly located along the perimeter of the imaginary circle and one at the geometric center. The space between nozzles, s, the exit velocity and the role of the jet from the center nozzle were considered. On the contrary to the propane non-premixed flame, small amount of fuel fed through the center nozzle makes the methane diffusion flame stable even at the choking conditions. In the laminar region, the flame at the center nozzle anchored the outer lifted flames.

Tomographic Interpretations of Visible Emissions from the Axisymmetric Partially Premixed Flames (단층진단법을 이용한 축대칭 부분예혼합 화염의 자발광 스펙트럼 해석에 관한 연구)

  • Ha, Kwang-Soon;Choi, Sang-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.6
    • /
    • pp.769-776
    • /
    • 2000
  • Visible spectral characteristics of cross-sectional emissions from a partially premixed methane/air and propane/air flames have been investigated. An optical train with a two-axis scanning mirror system was used to record line-of-sight emission spectra from 354nm to 618nm, and inversion technique was adapted to obtain cross-sectional emission spectra. By analyzing the reconstructed emission spectra, cross-sectional intensities of CH and $C_2$ radicals were separated from the background emissions. The blue flame edge and yellow flame edge were also obtained by image processing technique for edge detection with color photograph of flame. These edges were compared with radial distributions of CH, $C_2$ radicals and background emissions. The CH radicals were observed at blue flame edge. The background emissions were generated by soot precursor at upstream of flame and by soot at downstream of flame. The $C_2$ radicals in propane/air flame were observed more than those in methane/air flame.

Effects of Oxidant Addition to Fuel on Soot Formation of Laminar Diffusion Flames (동축류 확산화염의 매연생성에 미치는 연료에 첨가된 산화제의 영향)

  • Lee, Won-Nam
    • Journal of the Korean Society of Combustion
    • /
    • v.3 no.1
    • /
    • pp.11-19
    • /
    • 1998
  • The influence of oxidant addition on soot formation is investigated experimentally with ethylene, propane and mixture fuel co-flow diffusion flames. Oxidant addition into fuel shows the increase of integrated soot volume fractions for ethylene, ethylene/ethane and ethylene/methane mixture flames. However, the increase of integrated soot volume fraction with oxidant addition was not significant for propane and ethylene/propane mixture flames. This discrepancy is explained with $C_2\;and\;C_3$ chemistry at the early stage of soot formation process. The oxidant addition increases the concentration of $C_3H_3$ in the soot formation region, and therefore, enhances soot formation process. A new soot formation rate model that includes both dilution effect and chemical effect of oxygen is suggested to interpret the increase of integrated soot volume fractions with oxidant addition into ethylene. Also, the role of adiabatic flame temperature for the chemical effect of oxygen addition into fuel was reviewed. The influence of oxidant or diluent addition into fuel on soot formation process are the fuel dilution effect, the adiabatic flame temperature altering effect and/or the chemical effect of oxygen. Their relative importance could change with fuel structure and adiabatic flame temperature.

  • PDF

Fuel Dilution Effects for Stratified Premixed Flames (성층화된 예혼합화염에 대한 희석제 첨가의 영향)

  • Ahn, Taekook;Lee, Wonnam
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.73-76
    • /
    • 2013
  • The inert gas dilution effect for the stability of a stratified propane premixed flame has been experimentally studied. The addition of inert gases to a stratified premixed flame, which used to be very stable without dilution, makes a flame unstable. The lower equivalence ratio on the outer premixed flame and the lower fuel flow rate through the inner nozzle were observed to be the more stable conditions for the stratified premixed flame with nitrogen or argon dilution. It has been interpreted with the flame structure change such as shift of stoichiometric ratio region in a flame.

  • PDF

Soot Generation in a Coaxial Laminar Diffusion Flame (동축 층류 확산화염에서의 그을음 생성)

  • Shim, Sung-Hoon;Shin, Hyun-Dong
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.3
    • /
    • pp.9-15
    • /
    • 2002
  • Soot generation by combustion process has been investigated with objective of understanding of chemical reaction responsible for its formation in a coaxial laminar propane jet diffusion flame. For the direct photos, as the coflowing air flow rate is reduced, the area of soot luminous zone increases at first, then becomes smaller and smaller, and even disappears. The aspects of soot deposition can be acquired by using nine $15{\mu}m$ thin SiC fibers are positioned horizontally across the flame. Deposited soots on SiC fibers show the soot inception point and growth and soot oxidation zone in a typical propane diffusion. Soot is not generated anymore in a oxidizer deficient conditions of near-extinction and flame is fully occupied by transparent blue flame. It suggests that nonsooting pyroligneous blue reaction is being dominant in a oxidizer deficient ambience. In comparison with luminosities of SiC fibers and flame itself, indirect evidence is found that the process of soot nucleation and growth is endothermic reaction. It is remarkable that there exists two adjacent regions to have antithesis characteristics; one is exothermic reaction of blue flame and another endothermic reaction zone of soot formation.

  • PDF

Stabilization Characteristics of DME-Air Diffusion Flames Depending on the Configuration of the Fuel-Air Tubes in Half Closed Combustion Spaces (반밀폐 연소공간 내 동축관 형상에 따른 DME-공기 확산화염의 안정화 특성)

  • Kim, Go-Tae;Kim, Nam-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.11
    • /
    • pp.916-923
    • /
    • 2009
  • The effects of configuration of fuel and air tubes on the flame stabilization were experimentally investigated in half-closed combustors. Flame behaviors and stabilities of methane, propane, and DME flames were compared by changing tube diameters and the locations of the fuel and air tubes. It was found that flammability limits are significantly affected by the outlet boundary condition, which disturbs compositions of burned and unburned mixtures near the flame base. And it was found that there exist critical inner tube heights, over which flame stability is determined only by the fuel flow rate. Conclusively, flame stabilization is governed by the flame propagation velocity in an ordinary mixing flow and the non-uniform mixture concentration in the combustion space which is affected by flow recirculation and the combustor configuration. The compositions of $NO_x$ and CO were compared to know basic characteristics of methane, propane, and DME flames.

Soot Formation Characteristics of Concentric Ethylene/Propane Co-flow Diffusion Flames (층상구조 에틸렌/프로판 동축류화염의 매연 생성 특성)

  • Lee, Won-Nam;Koo, Bon-Seung
    • 한국연소학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.27-34
    • /
    • 2001
  • The soot formation characteristics have been studied experimentally in concentric co-flow ethylene/propane diffusion flames. Comparing to the homogeneously mixed propane/ethylene case, the increase of soot formation is observed when propane is supplied through the outer nozzle, while the decrease is observed when propane is supplied through the inner nozzle. The reaction path of PAHs formed from the pyrolysis process of propane is likely to be responsible to the observed difference. When propane is supplied through the outer nozzle, PAHs formed during the combustion process are easy to be exposed to the oxidization environment; however, when propane is supplied through the inner nozzle, PAHs are not likely to be oxidized and thus get involved in soot formation process. The synergistic effect in ethylene/propane diffusion flames is affected not only by the composition of mixture but also by the way of mixing.

  • PDF

Effect of Coflow Air Velocity on Heat-loss-induced Self-excitation in Laminar Lifted Propane Coflow-Jet Flames Diluted with Nitrogen (질소로 희석된 프로판 동축류 층류 제트 부상화염에서 열손실에 의한 자기진동에 대한 동축류 속도 효과)

  • Lee, Won-June;Yoon, Sung-Hwan;Park, Jeong;Kwon, Oh-Boong;Park, Jong-Ho;Kim, Tae-Hyung
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.1
    • /
    • pp.48-57
    • /
    • 2012
  • Laminar lifted propane coflow-jet flames diluted with nitrogen were experimentally investigated to determine heat-loss-related self-excitation regimes in the flame stability map and elucidate the individual flame characteristics. There exists a critical lift-off height over which flame-stabilizing effect becomes minor, thereby causing a normal heat-loss-induced self-excitation with O(0.01 Hz). Air-coflowing can suppress the normal heat-loss-induced self-excitation through increase of a Peclet number; meanwhile it can enhance the normal heat-lossinduced self-excitation through reducing fuel concentration gradient and thereby decreasing the reaction rate of trailing diffusion flame. Below the critical lift-off height. the effect of flame stabilization is superior, leading to a coflow-modulated heat-loss-induced self-excitation with O(0.001 Hz). Over the critical lift-off height, the effect of reducing fuel concentration gradient is pronounced, so that the normal heat-loss-induced self-excitation is restored. A newly found prompt self-excitation, observed prior to a heat-loss-induced flame blowout, is discussed. Heat-loss-related self-excitations, obtained laminar lifted propane coflow-jet flames diluted with nitrogen, were characterized by the functional dependency of Strouhal number on related parameters. The critical lift-off height was also reasonably characterized by Peclet number and fuel mole fraction.

The Dependency of CH* Chemiluminescence of a Laminar Premixed Flame on Fuel Types (연료에 따른 층류 예혼합화염의 CH* Chemiluminescence 신호특성 변화)

  • Lee, Won-Nam;Kang, Suk-Min
    • Journal of the Korean Society of Combustion
    • /
    • v.13 no.2
    • /
    • pp.14-22
    • /
    • 2008
  • The CH* chemiluminescence of premixed flames and their dependency on fuel types has been experimentally investigated on laminar methane and propane premixed flames. The measured chemiluminescence intensities are observed linearly proportional to the fuel flow rate, which could be interpreted as the CH* chemiluminescence signal is linearly proportional to the heat release rate under fuel lean conditions. The effect of equivalence ratio could be expressed by an exponential function as ${I_{CH*}}^{\propto}\;a_1\;{\exp}(b_1{\Phi})$, where $a_1\;=\;0.00054$ and $b_1\;=\;4.60$ for methane and $a_1\;=\;0.0056$ and $b_1\;=\;5.02$ for propane. Oscillating flames showed the temporal fluctuation of chemiluminescence intensity: however, the time averaged values are virtually identical to those of quiescent flames under the same fuel flow rate and equivalence ratio conditions. This observation suggests that there is no significant flame stretch effect on chemiluminescence intensity, in average values.

  • PDF