• Title/Summary/Keyword: Propagation Factors

Search Result 510, Processing Time 0.022 seconds

Sensitivity and Error Propagation Factors for Three-Parameter Ellipsometry

  • Ihm, Hye-Ran;Chung, Gyu-Sung;Paik, Woon-Kie;Lee, Duck-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.11
    • /
    • pp.976-980
    • /
    • 1994
  • The sensitivity factors and the error propagation factors are defined for the three-parameter ellipsometry (TPE). The sensitivity factor is useful for understanding the nature of the TPE measurements in connection with determination of the optical properties and the thickness of a film. On the other hand, the error propagation factors provide a quantitative tool for predicting the optimum condition for TPE experiments. Their usefulness is demonstrated for the passive film formed on nickel in aqueous solution.

Prediction of Fatigue Crack Propagation Life under Constant Amplitude and Overloading Condition (일정진폭 및 과대하중 하에서의 피로 균열 성장 수명 예측)

  • 이억섭;김승권
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.10
    • /
    • pp.113-119
    • /
    • 1998
  • Ship structures and aircraft structures are consisted of thin sheet alloy, so it is very important to understand the characteristics of fatigue crack propagation of that material and to establish the data base. The data for fatigue crack propagation behavior scatter very much even under identical experimental conditions with constant loading. The behavior of fatigue crack propagation under regular and irregular cyclic loadings is known to be highly affected by complicated factors such as plastic zone developed at the vicinity of crack tip and reduction of cross sectional area. In this paper, the controlled stress amplitude and overload fatigue crack propagation tests have been conducted to investigate the effect of varying factors such as plastic zone size near the crack tip and area reduction factor (AF) on the fatigue crack propagation behavior A better simulation of fatigue crack propagation behavior is found to be obtainable by using Wheeler and Willenborg models with AF effect.

  • PDF

Dynamic Stress Intensity Factors and Dynamic Crack Propagation Velocities in Polycarbonate WL-RDCB Specimen (WL-RDCB 시편의 동적 균열전파속도와 동적 응력확대계수)

  • 정석주;한민구
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.3
    • /
    • pp.3-9
    • /
    • 1996
  • Dynamic fracture characteristics of Polycarbonate WL-RDCB specimen were investigated. The dynamic crack propagation velocities in these specimens were measured by using both high speed camera system and silver paint grid method developed and justified in the INHA Fracture Mechanics Laboratory. The measured crack propagation velocities were fed into the INSAMCR code(a dynamic finite element code which has been developed in the INBA Fracture Mechanics Laboratory) to extract the dynamic stress intensity factors. It has been confirmed that both dynamic crack arrest toughness and the static crack arrest toughness depend on both the geometry and the dynamic crack propagation velocity of specimens. The maximum dynamic crack propagation velocity of Polycarbonate WL-RDCB specimen was found to be dependent on the material property, geometry and the type of loading. The dynamic cracks in these Polycarbonate WL-RDCB specimens seemed to propagate in a successive manner, involving distinguished 'propagation-arrest-propagation-arrest' steps on the microsecond time scale. It was also found that the relat-ionship between dynamic stress intensity factor and dynamic crack propagation velocities might be represented by the typical '$\Gamma$'shape.

  • PDF

Analysis of Traffic Noise Propagation around Main Roads in Kwang-ju City

  • Choi, Hyung-II;Cheong, Kyung-Hoon
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.4 no.1
    • /
    • pp.1-9
    • /
    • 2000
  • This paper describes an analysis of various factors affecting traffic noise propagation, including the distance from the road, existence of a direct path of noise propagation, density and height of buildings, and procedure for predicting the attenuation of noise levels from roads. The analysis is based on a multiple number of regression models, utilizing the quantification theory of the first kind. This study incorporates a large amount of survey data concerning traffic noise propagation. The survey of the traffic noise propagation around main roads was carried out in several residential areas, mainly in Kwangju. The attenuation of noise levels measured provided 691 usable data samples. A multiple regression analysis demonstrated that the distance from the road makes the most significant contribution to the attenuation of the noise level. The second contributor was found to be the existence of a direct path of noise propagation. The building density and average height of the buildings also affected the attenuation of the noise level considerably. Other factors, such as the height of the building behind the receiver microphone and the number of traffic lanes on the noise-source roads, did not contribute as much to the attenuation of the noise level as the factors mentioned avove.

  • PDF

Analysis of Input Factors of DNN Forecasting Model Using Layer-wise Relevance Propagation of Neural Network (신경망의 계층 연관성 전파를 이용한 DNN 예보모델의 입력인자 분석)

  • Yu, SukHyun
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.8
    • /
    • pp.1122-1137
    • /
    • 2021
  • PM2.5 concentration in Seoul could be predicted by deep neural network model. In this paper, the contribution of input factors to the model's prediction results is analyzed using the LRP(Layer-wise Relevance Propagation) technique. LRP analysis is performed by dividing the input data by time and PM concentration, respectively. As a result of the analysis by time, the contribution of the measurement factors is high in the forecast for the day, and those of the forecast factors are high in the forecast for the tomorrow and the day after tomorrow. In the case of the PM concentration analysis, the contribution of the weather factors is high in the low-concentration pattern, and that of the air quality factors is high in the high-concentration pattern. In addition, the date and the temperature factors contribute significantly regardless of time and concentration.

Fatigue Life Estimation of Welded Joints by using Mk-factor under a Propagation Mechanism of Multiple Collinear Surface Cracks (Mk-계수를 고려한 용접부 복수 표면균열 진전수명 평가)

  • 한승호;한정우;신병천;김재훈
    • Journal of Welding and Joining
    • /
    • v.22 no.4
    • /
    • pp.73-81
    • /
    • 2004
  • Failure mechanisms of welded joints under fatigue loads are interpreted that multiple collinear surface cracks initiating randomly along the weld toes propagate under the mutual interaction and coalescence of adjacent two cracks. To estimate fatigue crack propagation life for three types of the representative welded joints, i.e. non-load carrying cruciform, cover plate and longitudinal stiffener joint, the stress intensity factors at the front of the surface cracks have to be calculated, which are influenced strongly by the geometry of attachments, weld toes and the crack shapes. For the effective calculation of the stress intensity factors the Mk-factor was introduced which can be derived by a parametric study performed by FEM considering influence of the geometrical effects. The fatigue life of the cruciform joint was estimated by using the Mk-factors and the method considering the propagation mechanisms of the multiple surface cracks. Analysis results for the fatigue life had a good agreement with that of experiment.

Factors Influencing Resistance to the Metaverse: Focusing on Propagation Mechanisms

  • Mina Lee;Minjung Kim
    • International journal of advanced smart convergence
    • /
    • v.13 no.2
    • /
    • pp.110-118
    • /
    • 2024
  • This study examines factors influencing nonusers' resistance to the adoption of the metaverse, focusing on propagation mechanisms. It elucidates the role of innovation resistance within the metaverse adoption process. We applied the Innovation Resistance Model in the context of the metaverse and considers three major groups of factors influencing resistance to the metaverse: innovation characteristics (perceived usefulness, compatibility, perceived risk, and complexity), consumer characteristics (personal innovativeness), and propagation mechanisms (mass media, online media, and personal communication). An online survey of college students who do not use the metaverse revealed that perceived usefulness, compatibility, personal innovativeness, and online media were negative predictors of resistance to the metaverse. Conversely, perceived risk, mass media, and personal communication were positive predictors of resistance to the metaverse. Furthermore, innovation resistance was found to play a mediating role in the metaverse adoption process. Drawing upon the findings, we suggested marketing strategies to decrease resistance to the metaverse.

Fatigue Crack Propagation Behavior in STS304 under Mixed Mode Loading (혼합모드 하중에서의 STS304의 피로균열 전과거동)

  • Song, Sam-Hong;Lee, Jeong-Moo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.9
    • /
    • pp.131-139
    • /
    • 2001
  • The use of fracture mechanics has traditionally concentrated on crack growth under an opening mechanism. However, many service failure occur from cracks subjected to mixed mode loadings. Hence, it is necessary to evaluate the fatigue behavior under mixed mode loading. Under mixed mode loading conditions, not only the fatigue crack propagation rate is of importance, but also the crack propagation direction. The mode I and II stress intensity factors of CTS specimen were calculated using elastic finite element method. The propagation behavior of the fatigue crack of the STS304 steeds under mixed mode loading condition was evacuated by using stress intensity factors $K_I$ and $K_II. The MTS criterion and effective stress intensity factor were applied to predict the crack propagation direction and the fatigue crack propagation rate.

  • PDF

Finite element procedures for the numerical simulation of fatigue crack propagation under mixed mode loading

  • Alshoaibi, Abdulnaser M.
    • Structural Engineering and Mechanics
    • /
    • v.35 no.3
    • /
    • pp.283-299
    • /
    • 2010
  • This paper addresses the numerical simulation of fatigue crack growth in arbitrary 2D geometries under constant amplitude loading by the using a new finite element software. The purpose of this software is on the determination of 2D crack paths and surfaces as well as on the evaluation of components Lifetimes as a part of the damage tolerant assessment. Throughout the simulation of fatigue crack propagation an automatic adaptive mesh is carried out in the vicinity of the crack front nodes and in the elements which represent the higher stresses distribution. The fatigue crack direction and the corresponding stress-intensity factors are estimated at each small crack increment by employing the displacement extrapolation technique under facilitation of singular crack tip elements. The propagation is modeled by successive linear extensions, which are determined by the stress intensity factors under linear elastic fracture mechanics (LEFM) assumption. The stress intensity factors range history must be recorded along the small crack increments. Upon completion of the stress intensity factors range history recording, fatigue crack propagation life of the examined specimen is predicted. A consistent transfer algorithm and a crack relaxation method are proposed and implemented for this purpose. Verification of the predicted fatigue life is validated with relevant experimental data and numerical results obtained by other researchers. The comparisons show that the program is capable of demonstrating the fatigue life prediction results as well as the fatigue crack path satisfactorily.

Improved Power Estimation Methodology Based on Signal Transition Density Propagation Behavior (신호 전이 밀도 전파 동작에 기초한 향상된 전력 평가 방법의 연구)

  • Kim, Dong-Ho;Woo, Jong-Jung
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.8
    • /
    • pp.2520-2527
    • /
    • 2000
  • An improved transition density propagation method for power estimation is proposed. The power estimation for the zero delay model is a proper criteria for the.lower boutldlIry for power consumption. A transition propagation method, including the zero delay model as a lower boundary for power stimation was studied. However, there were some redundancy factors in the process of transition density propagation. Hence this paper will explore the transition density propagation behavior to eliminate the redundancy factors and present theirriprQved estimation methodology for the signal transition density. The experiments show that the proposed method has comparably better estimation accuracy than the conventional methods.

  • PDF