• Title/Summary/Keyword: Propagation Channel Model

Search Result 165, Processing Time 0.027 seconds

Power Line Channel Model Considering Adjacent Nodes with Reduced Calculation Complexity due to Multipath Signal Propagation and Network Size Using Infinite Geometric Series and Matrices (무한 등비급수와 행렬을 이용하여 멀티 패스 신호 전송과 네트워크 크기에 의한 계산의 복잡성을 줄이고 근접 노드의 영향을 고려한 전력선 통신 채널 모델)

  • Shin, Jae-Young;Jeong, Ji-Chai
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.2
    • /
    • pp.248-255
    • /
    • 2009
  • We proposed a power line channel model. We adopted advantages of other power line channel models to calculate channel responses correctly and simply. Infinite geometric series reduced the calculation complexity of the multipath signal propagation. Description Matrices were also adopted to handle the network topology easily. It represents complex power line network precisely and simply. Newly proposed model considered the effect of the adjacent nodes to channel responses, which have been not considered so far. Several simulations were executed to verify the effect of the adjacent nodes. As a result we found out that it affected channel responses but its effect was limited within certain degree.

Measurement-Based Propagation Channel Characteristics for Millimeter-Wave 5G Giga Communication Systems

  • Lee, Juyul;Liang, Jinyi;Kim, Myung-Don;Park, Jae-Joon;Park, Bonghyuk;Chung, Hyun Kyu
    • ETRI Journal
    • /
    • v.38 no.6
    • /
    • pp.1031-1041
    • /
    • 2016
  • This paper presents millimeter-wave (mmWave) propagation characteristics and channel model parameters including path loss, delay, and angular properties based on 28 GHz and 38 GHz field measurement data. We conducted measurement campaigns in both outdoor and indoor at the best potential hotspots. In particular, the model parameters are compared to sub-6 GHz parameters, and system design issues are considered for mmWave 5G Giga communications. For path loss modeling, we derived parameters for both the close-in free space model and the alpha-beta-gamma model. For multipath models, we extracted delay and angular dispersion characteristics including clustering results.

Ergodic Capacity Analysis of OFDM Transmission Channel Applied to the MIMO Antennas Considering Spatial Propagation Property (공간적 전파전파 특성을 고려한 MIMO 안테나에 적용한 OFDM 전송 채널의 에르고딕 용량 분석)

  • Kim Chang-Joong;Lee Ho-Kyoung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.3 s.106
    • /
    • pp.267-271
    • /
    • 2006
  • In this paper, we use the OFDM transmission channel model applied to the MIMO antennas considering spatial propagation property to evaluate and investigate the ergodic capacity of the channel. Specially, we have applied our results to 3GPP TR 25.99 V1.1.0 case 1 LOS off channel description and calculated ergodic capacity with parameters, cluster angle spread and angle of arrival(AOA). Our results show that as the cluster angle spread increase the channel capacity increase until 35 degree, but for more than 35 degree channel capacity does not improved.

Development of a SEAMCAT Based Interference Evaluation Tool with ITU-R P.526 (ITU-R P.526을 지원하는 SEAMCAT 기반 전파 간섭 평가 도구 개발)

  • Lim, Chang Heon;Kwon, Jong Man;Kim, Yong Hoon;Lee, Yang Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37C no.9
    • /
    • pp.791-801
    • /
    • 2012
  • Currently, SEAMCAT has been widely used as a tool to evaluate the effects of interference among a variety of wireless communication systems. This supports various channel propagation models, all of which are based on some statistical models for the channel propagation and do not exploit any specific terrain characteristics. Thus it is not appropriate for assessing the effects of interference between wireless systems, given some specific terrain features. In order to overcome this limit in its use, it is necessary to extend the capability of SEAMCAT to support a channel propagation model which takes into account terrain informations. The ITU-R P.526 is a familiar channel propagation model which calculates the path loss considering the terrain features. In this paper, we present an enhanced version of SEAMCAT which supports the ITU-R P.526 and provide a few examples of interference evaluation using it.

MIMO Channel Analysis Method using Ray-Tracing Propagation Model (전파예측모델을 이용한 MIMO 채널 분석 방법)

  • 오상훈;명로훈
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.8
    • /
    • pp.759-764
    • /
    • 2004
  • This paper proposes a method that estimates MIMO channel characteristics analytically using a 3D ray tracing propagation model. We calculate the discrete spatial correlation between sub-channels by considering phase differences of paths, and using this, estimate the mean capacity upper bound of MIMO channel by Jensen's inequality. This analysis model is a deterministic model that do not approach stochastically through measurement nor approach statistically through Monte-Carlo simulations, so this model has high efficiency for time and cost. And based on the electromagnetic theory, this model may analyze quantitatively the parameters which can affect the channel capacity - antenna pattern, polarization mutual coupling, antenna structure and etc. This model may be used for the development of an optimal antenna structure for MIMO systems.

Large Eddy Simulation of Turbulent Premixed Flame in Turbulent Channel Flow

  • Ko Sang-Cheol;Park Nam-Seob
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.8
    • /
    • pp.1240-1247
    • /
    • 2006
  • Large eddy simulation of turbulent premixed flame in turbulent channel flow is studied by using G-equation. A flamelet model for the premixed flame is combined with a dynamic subgrid combustion model for the filtered propagation flame speed. The objective of this work is to investigate the validity of the dynamic subgrid G-equation model to a complex turbulent premixed flame. The effect of model parameters of the dynamic sub grid G-equation on the turbulent flame speed is investigated. In order to consider quenching of laminar flames on the wall, wall-quenching damping function is employed in this calculation. In the present study, a constant density turbulent channel flow is used. The calculation results are evaluated by comparing with the DNS results of Bruneaux et al.

Finite Element Analysis of Gradually and Rapidly Varied Unsteady Flow in Open Channel : II. Applications (개수로내의 점변 및 급변 부정류에 대한 유한요소해석 : II. 적용예)

  • Han, Geon-Yeon;Park, Jae-Hong;Lee, Eul-Rae
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.1
    • /
    • pp.35-44
    • /
    • 1997
  • Petrov-Galerkin finite element model for analyzing dynamic wave equation is applied to gradually and rapidly varied unsteady flow. The model in verified by applying to hydraulic jump, nonlinear disturbance propagation in frictionless horizontal channel and dam-break analysis. It shows stable and accurate results compared with analytical solutions for various cases. The model in applied to a surge propagation in a frictionless horizontal channel. Three-dimensional water surface profiles show that the computed result converges to the analytical one with sharp discontinuity. The model is also applied to the Taehaw River to analyze unsteady floodwave propagation. The computed results have good agreements with those of DWOPER model in terms of discharge and stage hydrographs.

  • PDF

Time Domain Response of Random Electromagnetic Signals for Electromagnetic Topology Analysis Technique

  • Han, Jung-hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.2
    • /
    • pp.135-144
    • /
    • 2022
  • Electromagnetic topology (EMT) technique is a method to analyze each component of the electromagnetic propagation environment and combine them in the form of a network in order to effectively model the complex propagation environment. In a typical commercial communication channel model, since the propagation environment is complex and difficult to predict, a probabilistic propagation channel model that utilizes an average solution, although with low accuracy, is used. However, modeling techniques using EMT technique are considered for application of propagation and coupling analysis of threat electromagnetic waves such as electromagnetic pulses, radio wave models used in electronic warfare, local communication channel models used in 5G and 6G communications that require relatively high accuracy electromagnetic wave propagation characteristics. This paper describes the effective implementation method, algorithm, and program implementation of the electromagnetic topology (EMT) method analyzed in the frequency domain. Also, a method of deriving a response in the time domain to an arbitrary applied signal source with respect to the EMT analysis result in the frequency domain will be discussed.

A Study on the propagation channel modeling for Korean joint tactical Data Link (한국형 합동전술데이터링크 구축을 위한 관한 전파환경 채널 모델링)

  • Lee, Sung-Gu
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.11a
    • /
    • pp.814-817
    • /
    • 2012
  • It has to secure the reliability for the propagation performance in the physical layer of the products for comprising system in order to satisfy the service quality. The radiowave environment under the actual service circumstance is measured. By using the channel model which models and which it obtains, the performance about the access device tries to be tested under the laboratory environment and there is the object of channel modeling.

Ultra Wideband Channel Model for Indoor Environments

  • Alvarez, Alvaro;Valera, Gustavo;Manuel Lobeira;Torres, Rafael-Pedro;Garcia, Jose-Luis
    • Journal of Communications and Networks
    • /
    • v.5 no.4
    • /
    • pp.309-318
    • /
    • 2003
  • This paper presents an in-depth study of a UWB indoor radio channel between 1 and 9 GHz, which was used for the subsequent development of a new statistical UWB multipath channel model, focusing on short range indoor scenarios. The channel sounding process was carried out covering different indoor environments, such as laboratories, halls or corridors. A combination of new and traditional parameters has been used to accurately model the channel impulse response in order to perform a precise temporal estimation of the received pulse shape. This model is designed specifically for UWB digital systems, where the received pulse is correlated with an estimated replica of itself. The precision of the model has been verified through the comparison with measured data from equivalent scenarios and cases, and highly satisfactory results were obtained.