• Title/Summary/Keyword: Promoter-10 region

Search Result 391, Processing Time 0.034 seconds

Wedelolactone Promotes the Chondrogenic Differentiation of Mesenchymal Stem Cells by Suppressing EZH2

  • Wei Qin;Lin Yang;Xiaotong Chen;Shanyu Ye;Aijun Liu;Dongfeng Chen;Kunhua Hu
    • International Journal of Stem Cells
    • /
    • v.16 no.3
    • /
    • pp.326-341
    • /
    • 2023
  • Background and Objectives: Osteoarthritis (OA) is a degenerative disease that leads to the progressive destruction of articular cartilage. Current clinical therapeutic strategies are moderately effective at relieving OA-associated pain but cannot induce chondrocyte differentiation or achieve cartilage regeneration. We investigated the ability of wedelolactone, a biologically active natural product that occurs in Eclipta alba (false daisy), to promote chondrogenic differentiation. Methods and Results: Real-time reverse transcription-polymerase chain reaction, immunohistochemical staining, and immunofluorescence staining assays were used to evaluate the effects of wedelolactone on the chondrogenic differentiation of mesenchymal stem cells (MSCs). RNA sequencing, microRNA (miRNA) sequencing, and isobaric tags for relative and absolute quantitation analyses were performed to explore the mechanism by which wedelolactone promotes the chondrogenic differentiation of MSCs. We found that wedelolactone facilitates the chondrogenic differentiation of human induced pluripotent stem cell-derived MSCs and rat bone-marrow MSCs. Moreover, the forkhead box O (FOXO) signaling pathway was upregulated by wedelolactone during chondrogenic differentiation, and a FOXO1 inhibitor attenuated the effect of wedelolactone on chondrocyte differentiation. We determined that wedelolactone reduces enhancer of zeste homolog 2 (EZH2)-mediated histone H3 lysine 27 trimethylation of the promoter region of FOXO1 to upregulate its transcription. Additionally, we found that wedelolactone represses miR-1271-5p expression, and that miR-1271-5p post-transcriptionally suppresses the expression of FOXO1 that is dependent on the binding of miR-1271-5p to the FOXO1 3'-untranscribed region. Conclusions: These results indicate that wedelolactone suppresses the activity of EZH2 to facilitate the chondrogenic differentiation of MSCs by activating the FOXO1 signaling pathway. Wedelolactone may therefore improve cartilage regeneration in diseases characterized by inflammatory tissue destruction, such as OA.

Tissues Expression, Polymorphisms of IFN Regulatory Factor 6 (IRF6) Gene and Their Associated with Immune Traits in Three Pig Populations

  • Liu, Yang;Xu, Jingeng;Fu, Weixuan;Weng, Ziqing;Niu, Xiaoyan;Liu, Jianfeng;Ding, Xiangdong;Zhang, Qin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.2
    • /
    • pp.163-169
    • /
    • 2012
  • Interferon regulatory factor 6 (IRF6) gene is a member of the IRF-family, and plays functionally diverse roles in the regulation of the immune system. In this report, the 13,720 bp porcine IRF6 genomic DNA structure was firstly identified with a putative IRF6 protein of 467 amino acids. Alignment and phylogenetic analysis of the porcine IRF6 amino acid sequences with their homologies to other species showed high identity (over 96%). Tissues expression of IRF6 mRNA was observed by RT-PCR, the results revealed IRF6 expressed widely in eight tissues. One SNP (HQ026023:1383 G>C) in exon7 and two SNPs (HQ026023:130 G>A; 232 C>T) in the 5′ promoter region of porcine IRF6 gene were demonstrated by DNA sequencing analysis. A further analysis of SNP genotypes associated with immune traits including IFN-${\gamma}$ and IL10 concentrations in serum was carried out in three pig populations including Large White, Landraces and Songliao Black pig (a Chinese indigenous breed). The results showed that the SNP (HQ026023:1383 G>C) was significantly associated with the level of IFN-${\gamma}$ (d 20) in serum (p = 0.038) and the ratio of IFN-${\gamma}$ to IL10 (d 20) in serum (p = 0.041); The other two SNPs (HQ026023:130 G>A; 232 C>T) were highly significantly associated with IL10 level in serum both at the day 20 (p = 0.005; p = 0.001) and the day 35 (p = 0.004; p = 0.006). Identification of the porcine IRF6 gene will help our further understanding of the molecular basis of the IFN regulation pathway in the porcine immune response. All these results should indicate that the IRF6 gene can be regarded as a molecular marker associated with the IL10 level in serum and used for genetic selection in the pig breeding.

Genomic Structure Analyses of Five Kinds of Human Sialyltransferase Gene (5종류의 인간유래 시알산전이효소 유전자들의 게놈구조 분석)

  • Kang Nam-Young;Kim Sang-Wan;Kim Cheorl-Ho;Lee Young-Choon
    • Journal of Life Science
    • /
    • v.14 no.6 s.67
    • /
    • pp.1009-1017
    • /
    • 2004
  • Sialyltransferases cloned so far show the remarkable tissue-specific expression, which is correlated with the existence of cell type-specific sialylated sugar structure in glycoconjugates. In the previous studies, we found various mRNA isoforms of human sialyltransferases generated by alternative splicing and alternative promoter utilization. To understand the regulatory mechanisms for specific expression of human sialyltransferase genes and for production of their mRNA isoforms, in this study, we have isolated and characterized five kinds of human sialyltransferase genes: hST3Gal II, hST8Sia II, hST8Sia III, hST8Sia IV, and hST8Sia V. The hST3Gal II gene is composed of six exons, which span over 17kb, with exons ranging in size from 46 to over 1017 bp. The hST8Sia III gene comprises over 10 kb, and consists of only four exons, which is much smaller and simpler than other human sialyltransferase genes. In contrast, three genes (hST8Sia II, hST8Sia IV and hST8Sia V) span more than 70 kb, and comprise five or more exons. All exon-intron boundaries follow the GT-AG rule. In particular, the sialylmotif L, which is a highly conserved region in all cloned sialyltransferases, was found in one exon of hST8Sia III, whereas this motif is encoded by discrete exons in the other human sialyltransferases. Exon structures of these sialyltransferase genes show the structural diversity, as found in other human sialyltransferase genes reported so far. We determined the transcription start site of hST3Gal II gene by the 5'-RACE and cap site hunting experiments.

Clone Identification of Cudraria Tricuspidata and Hibiscus Syriacus by Using PCR and Southern Hybridization (PCR과 Southern hybridization을 이용한 구지뽕나무와 무궁화의 클론감별)

  • Ryu, Jang-Bal;Park, Sang-Gyu
    • Applied Biological Chemistry
    • /
    • v.41 no.1
    • /
    • pp.42-46
    • /
    • 1998
  • Polymerase chain reaction (PCR) and Southern hybridization analyses were carried out to identify clones of silk worm thorn (Cudraria tricuspidata) and Rose of sharon (Hibiscus syriacus) which look like one tree with two ar three, branches or two or three different trees. For PCR five different PCR primers $(17{\sim}24\;nucleotides)$ are derived from CaMV 35S promoter, nopaline synthase terminator and coding region of thylakoid membrane protein gene. In the case of silk worm thorn, about 500 bp of PCR product was produced from DNAs of one tree or branch in the presence of 35S primer alone. Southern hybridization analysis of genomic DNAs hybridized with $^{32}P$ labeled PCR product showed that the same size of DNA fragments were hybridized with different intensities. In addition, PCR analyses using 20 different primers of OPERON 10-mer kits showed that only OPA01 primer produced PCR products of different size. These results indicate that two different trees of silk worm thorn combined to one tree. In the case of the Rose of Sharon, the same size of PCR products were produced from three different samples but Southern hybridization with the above PCR product as a probe did not show any hybridized bands. PCR analyses in the presence of OPERON 10-mers showed OPA04 and OPA13 produced different products including same sizes of products. These, results indicate that three different trees of the Rose of Sharon seem to be derived from the tree.

  • PDF

Association Between MDM2 SNP309 T>G and Risk of Gastric Cancer: A Meta-analysis

  • Tian, Xin;Tian, Ye;Ma, Ping;Sui, Cheng-Guang;Meng, Fan-Dong;Li, Yan;Fu, Li-Ye;Jiang, Tao;Wang, Yang;Ji, Fu-Jian;Fang, Xue-Dong;Jiang, You-Hong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.3
    • /
    • pp.1925-1929
    • /
    • 2013
  • Background: As a negative regulator of P53, MDM2 plays an important role in carcinogenesis; a polymorphism in its promoter region. SNP309 T>G, is known to increase the expression of MDM2, thus being considered related to higher susceptibility to neoplasia. However, no agreement has been achieved regarding its effects on gastric cancer. Methods: The present systematic meta-analysis was performed based on comprehensive literature search from Pubmed, Web of science and CBM databases. Results: It was suggested from 6 independent studies that the GG genotype is associated with a significantly increased risk of gastric cancer (Recessive: OR = 1.43, 95% CI = 1.08-1.91, P = 0.013), and subgroup analysis also confirmed the relationship (English publications-recessive model: OR = 1.45, 95% CI = 1.10-1.91, P = 0.009; Studies in China-recessive model: OR = 1.58, 95% CI = 1.08-2.30, P = 0.017). No publication bias was detected. Conclusion: The meta-analysis indicated a significant inverse association between GG genotype carriage and elevated risk of gastric cancer. However, more studies and detailed information are needed to fully address the topic.

Mechanism Underlying the Anti-Inflammatory Action of Piceatannol Induced by Lipopolysaccharide (당지질로 유도한 염증반응에서 Piceatannol의 항염증 기전 연구)

  • Cho, Han-Jin;Shim, Jae-Hoon;So, Hong-Seob;YoonPark, Jung-Han
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.9
    • /
    • pp.1226-1234
    • /
    • 2012
  • 3,4,3',5'-Tetrahydroxy-trans-stilbene (piceatannol) is a derivative of resveratrol with a variety of biological activities, including anti-inflammatory, anti-proliferative, and anti-cancer activities. We assessed the mechanisms by which piceatannol inhibits inflammatory responses using lipopolysaccharide (LPS)-treated Raw264.7 murine macrophages. Piceatannol (0~10 ${\mu}mol/L$) decreased LPS-induced release of nitric oxide, tumor necrosis factor (TNF)-${\alpha}$, interleukin (IL)-6, IL-$1{\beta}$, and inhibited LPS-induced protein expression of inducible nitric oxide synthase (iNOS). Activation of nuclear factor-kappaB (NF-${\kappa}B$), activator protein (AP)-1, and signal transducer and activator of transcription 3 (STAT3) are crucial steps during an inflammatory response. Piceatannol prevented LPS-induced degradation of inhibitor of ${\kappa}B$ ($I{\kappa}B$), translocation of p65 to the nucleus, and phosphorylation of stress-activated protein kinase/c-Jun NH2-terminal kinase (SAPK/JNK). Additionally, piceatannol inhibited LPS-induced phosphorylation of STAT3 and IL-6-induced translocation of STAT3 to the nucleus. Furthermore, piceatannol increased the protein and mRNA levels of hemeoxygenase (HO)-1, the rate-limiting enzyme of heme catabolism that plays a critical role in mediating antioxidant and anti-inflammatory effects. Piceatannol further induced antioxidant response elements (ARE)-driven luciferase activity in Raw264.7 cells transfected with an ARE-luciferase reporter construct containing the enhancer 2 and minimal promoter region of HO-1. These results suggest that piceatannol exerts anti-inflammatory effects via the down-regulation of iNOS expression and up-regulation of HO-1 expression.

Gene Structure and Altered mRNA Expression of Metallothionein in Response to Metal Exposure and Thermal Stress in Miho Spine Loach Cobitis choii (Cobitidae; Cypriniformes) (미호종개 metallothionein 유전자의 구조 및 중금속 노출과 고온 자극에 대한 MT mRNA의 발현 특징 분석)

  • Lee, Sang-Yoon;Nam, Yoon-Kwon
    • Korean Journal of Ichthyology
    • /
    • v.23 no.1
    • /
    • pp.61-69
    • /
    • 2011
  • Gene and promoter structures of metallothionein(MT) from Miho spine loach (Cobitis choii; Cypriniformes) were characterized, and the transcriptional responses to experimental exposures to heavy metals and heat stress were examined. The C. choii metallothionein displayed well-conserved features of teleostean metallothioneins at gDNA, mRNA and amino acid levels. Bioinformatic analysis predicted that the C. choii MT regulatory region potentially possessed various motifs or elements targeted by various transcription factors associated with metal-coordinating regulation (e.g., metal transcription factor-1), immune responses (e.g., nuclear factor kappa B), and thermal modulations (e.g., heat shock factor). Acute heavy-metal exposures to 0.5 or $1.0\;{\mu}M$ of cadmium (Cd), copper (Cu), manganese (Mn), nickel (Ni) or zinc (Zn) showed that MT transcription was significantly stimulated by Cd (9.6-fold relative to non-exposed control) and Cu (10.4-fold), only moderately by Mn (2.4-fold), but hardly by Ni and Zn. Elevation of water temperature from $25^{\circ}C$ to $31^{\circ}C$ caused a rapid modulation of MT mRNAs toward upregulation to 9.5-fold; however, afterward the elevated mRNA level slightly decreased during further incubation at $31^{\circ}C$ for 6 h. Results from this study suggest that MT-based expression assay could be a useful basis for better understanding the metal- and/or heat-caused stresses in this endangered fish species.

Association of Polymorphism Harbored by Tumor Necrosis Factor Alpha Gene and Sex of Calf with Lactation Performance in Cattle

  • Yudin, N.S.;Aitnazarov, R.B.;Voevoda, M.I.;Gerlinskaya, L.A.;Moshkin, M.P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.10
    • /
    • pp.1379-1387
    • /
    • 2013
  • In a majority of mammals, male infants have heavier body mass and grow faster than female infants. Accordingly, male offspring nursing requires a much greater maternal energy contribution to lactation. It is possible that the maternal-fetal immunoendocrine dialog plays an important role in female preparation for lactation during pregnancy. Immune system genes are an integral part of gene regulatory networks in lactation and tumor necrosis factor alpha ($TNF{\alpha}$) is a proinflammatory cytokine that also plays an important role in normal mammary gland development. The aim of this study was to evaluate the influence of the sex of calf and/or the -824A/G polymorphism in the promoter region of $TNF{\alpha}$ gene on milk performance traits in Black Pied cattle over the course of lactation. We also studied the allele frequency differences of -824A/G variants across several cattle breeds, which were bred in different climatic conditions. The G allele frequency decreased gradually over the course of lactation events in the Black Pied dairy cattle because of a higher culling rate of cows with the G/G genotype (p<0.001). In contrast to the genotypes A/A and A/G, cows with G/G genotype showed significant variability of milk and milk fat yield subject to sex of delivered calf. Milk yield and milk fat yield were significantly higher in the case of birth of a bull calf than with a heifer calf (p<0.03). The G allele frequency varies from 48% to 58% in Grey Ukrainian and Black Pied cattle to 77% in aboriginal Yakut cattle. Our results suggest that the $TNF{\alpha}$-824A/G gene polymorphism may have an influence on the reproductive efforts of cows over the course of lactation events depending on the sex of progeny. Allocation of resources according to sex of the calf allows optimizing the energy cost of lactation. This may be a probable reason for high G allele frequency in Yakut cattle breeding in extreme environmental conditions. Similarly, the dramatic fall in milk production after birth of a heifer calf increases the probability of culling for the cows with the G/G genotype in animal husbandry.

Genome-wide Methylation Analysis and Validation of Cancer Specific Biomarker of Head and Neck Cancer (전장유전체수준 메틸레이션 분석을 통한 두경부암 특이 메틸레이션 바이오마커의 발굴)

  • Chang, Jae Won;Park, Ki Wan;Hong, So-Hye;Jung, Seung-Nam;Liu, Lihua;Kim, Jin Man;Oh, Taejeong;Koo, Bon Seok
    • Korean Journal of Head & Neck Oncology
    • /
    • v.33 no.1
    • /
    • pp.21-29
    • /
    • 2017
  • Methylation of CpG islands in the promoter region of genes acts as a significant mechanism of epigenetic gene silencing in head and neck squamous cell carcinoma (HNSCC). DNA methylation markers are particularly advantageous because DNA methylation is an early event in tumorigenesis, and the epigenetic modification, 5-methylcytosine, is a stable mark. In the present study, we assessed the genome-wide preliminary screening and were to identify novel methylation biomarker candidate in HNSCC. Genome-wide methylation analysis was performed on 10 HNSCC tumors using the Methylated DNA Isolation Assay (MeDIA) CpG island microarray. Validation was done using immunohistochemistry using tissue microarray of 135 independent HNSCC tumors. In addition, in vitro proliferation, migration/invasion assays, RT-PCR and immunoblotting were performed to elucidate molecular regulating mechanisms. Our preliminary validation using CpG microarray data set, immunohisto-chemistry for HNSCC tumor tissues and in vitro functional assays revealed that methylation of the Homeobox B5 (HOXB5) and H6 Family Homeobox 2 (HMX2) could be possible novel methylation biomarkers in HNSCC.

Extrahypothalamic Expression of Rat Growth Hormone Releasing Hormone (GHRH);a possible intrapituitary factor for lactotroph differentiation? (흰쥐의 시상하부외 지역에서의 Growth Hormone Releasing Hormone (GHRH) 유전자발현;뇌하수체내 국부인자로서 Lactotroph분화에 관여할 가능성에 대하여)

  • Lee, Sung-Ho
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.23 no.3
    • /
    • pp.269-275
    • /
    • 1996
  • Biosynthesis and secretion of anterior pituitary hormones are under the control of specific hypothalamic stimulatory and inhibitory factors. Among them, Growth Hormone Releasing Hormone (GHRH) is the major stimulator of pituitary somatotrophs activating GH gene expression and secretion. Human GHRH is a polypeptide of 44 amino acids initially isolated from pancreatic tumors, and the gene for the hypothalamic form of GHRH is organized into 5 exons spanning over 10 kilobases (kb) on genomic DNA and encodes a messenger RNA of 700-750 nucleotides. Several neuropeptides classically associated with the hypothalamus have been found in the extrahypothalamic regions, suggesting the existence of novel sources, targets and functions. GHRH-like immunoreactivity has been found in several peripheral sites, including placenta, testis, and ovary, indicating that GHRH may also have regulatory roles in peripheral reproductive organs. Furthermore, higher molecular weight forms of the GHRH transcripts were identified from these organs (1.75 kb in testis; 1.75 and >3 kb in ovary). These tissue-specific expression of GHRH gene suggest the existence of unique regulatory mechanism of GHRH expression and function in these organs. In fact, placenta-specific and testis-specific promoters for GHRH transcripts which are located in about 10 kb upstream region of hypothalamic promoter were reported. The use of unique promoters in extrahypothalamic sites could be refered in a different control of GHRH gene and different functions of the translated products in these tissues. Somatotrophs and lactotrophs have been thought to be derived from a common bipotential progenitor, the somatolactotrophs, which give origins to either phenotypes. Although the precise mechanism responsible for the lactotroph differentiation in the anterior pituitary gland has not been yet clalified, there are several candidators for the generation of lactotrophs. In human, the presence of GHRH peptides with different size from authentic hypothalamic form in the normal anterior pituitary and several types of adenoma were demonstrated. Recently our group found the existence of immunoreactive GHRH and its transcript from the normal rat anterior pituitary (gonadotroph> somatotroph> lactotroph), and the GHRH treatment evoked the increased proliferation rate of anterior pituitary cells in vitro. The transgenic mouse models clearly shown that GHRH or NGF overexpression by anterior pituitary cells induced development of pituitary hyperplasia and adenomas particularly GH-oma and prolactinoma. Taken together, we hypothesize that the pituitary GHRH could serve not only as a modulator of hormone secretion but as a paracrine or autocrine regulator of anterior pituitary cell proliferation and differentiation. Interestingly enough, the expression of Pit-1 homeobox gene (the POU class transcription factor) was confined to somatotrophs, lactotrophs and somatolactotrophs in which GHRH receptors are expressed commonly. Concerning the mechanism of somatolactotroph and lactotroph differentiation in the anterior pituitary, we have focused following two possibilities; (1) changes in the relative levels or interactions of both hypothalamic and intrapituitary factors such as dopamine, VIP, somatostatin, NGF and GHRH; (2) alterations of GHRH-GHRH receptor signaling and Pit-1 activity may be the cause of lactotroph differentiation or pituitary hyperplasia and adenoma formation. Extensive further studies will be necessary to solve these complicated questions.

  • PDF