• Title/Summary/Keyword: Promoter Methylation

Search Result 198, Processing Time 0.052 seconds

Temporal and Spatial Downregulation of Arabidopsis MET1 Activity Results in Global DNA Hypomethylation and Developmental Defects

  • Kim, Minhee;Ohr, Hyonhwa;Lee, Jee Woong;Hyun, Youbong;Fischer, Robert L.;Choi, Yeonhee
    • Molecules and Cells
    • /
    • v.26 no.6
    • /
    • pp.611-615
    • /
    • 2008
  • DNA methylation is an epigenetic mechanism for gene silencing. In Arabidopsis, MET1 is the primary DNA methyltransferase that maintains CG DNA methylation. Plants having an overall reduction of MET1 activity, caused by a met1 mutation or a constitutively expressed MET1 antisense gene, display genome hypomethylation, inappropriate gene and transposon transcription, and developmental abnormalities. However, the effect of a transient reduction in MET1 activity caused by inhibiting MET1 expression in a restricted set of cells is not known. For this reason, we generated transgenic plants with a MET1 antisense gene fused to the DEMETER (DME) promoter (DME:MET1 a/s). Here we show that DME is expressed in leaf primordia, lateral root primoridia, in the region distal to the primary root apical meristem, which are regions that include proliferating cells. Endogenous MET1 expression was normal in organs where the DME:MET1 a/s was not expressed. Although DME promoter is active only in a small set of cells, these plants displayed global developmental abnormalities. Moreover, centromeric repeats were hypomethylated. The developmental defects were accumulated by the generations. Thus, not maintaining CG methylation in a small population of proliferating cells flanking the meristems causes global developmental and epigenetic abnormalities that cannot be rescued by restoring MET1 activity. These results suggest that during plant development there is little or no short-term molecular memory for reestablishing certain patterns of CG methylation that are maintained by MET1. Thus, continuous MET1 activity in dividing cells is essential for proper patterns of CG DNA methylation and development.

Methylation of the Mouse Dlx5 and Osx Gene Promoters Regulates Cell Type-specific Gene Expression

  • Lee, Ji Yun;Lee, Yu Mi;Kim, Mi Jin;Choi, Je Yong;Park, Eui Kyun;Kim, Shin Yoon;Lee, Sam Poong;Yang, Jae Sup;Kim, Dong Sun
    • Molecules and Cells
    • /
    • v.22 no.2
    • /
    • pp.182-188
    • /
    • 2006
  • Dlx5 and Osx are master regulatory proteins essential for initiating the cascade leading to osteoblast differentiation in mammals, but the mechanism of osteoblast-specific expression is not fully understood. DNA methylation at CpG sequences is involved in tissue and cell type-specific gene expression. We investigated the methylation status of Dlx5 and Osx in osteogenic and nonosteogenic cell lines by methylationspecific PCR (MSP). The CpG dinucleotides of the Dlx5 and Osx promoter regions were unmethylated in osteogenic cell lines transcribing these genes but methylated in nonosteogenic cell lines. Treatment of C2C12 cells with 5-AzadC induced dose- and timedependent expression of Dlx5 and Osx mRNA by demethylating the corresponding promoters. Furthermore the mRNAs for the osteoblast markers ALP and OC, which were undetectable in untreated cells, gradually increased after 5-AzadC treatment. In addition, BMP-2 stimulation induced Dlx5 expression by hypomethylating its promoter. These findings suggest that DNA methylation plays an important role in cell type-specific expression of Dlx5 and Osx.

Maternal undernutrition alters the skeletal muscle development and methylation of myogenic factors in goat offspring

  • Zhou, Xiaoling;Yan, Qiongxian;Liu, Liling;Chen, Genyuan;Tang, Shaoxun;He, Zhixiong;Tan, Zhiliang
    • Animal Bioscience
    • /
    • v.35 no.6
    • /
    • pp.847-857
    • /
    • 2022
  • Objective: The effects of maternal undernutrition during midgestation on muscle fiber histology, myosin heavy chain (MyHC) expression, methylation modification of myogenic factors, and the mammalian target of rapamycin (mTOR) signaling pathway in the skeletal muscles of prenatal and postnatal goats were examined. Methods: Twenty-four pregnant goats were assigned to a control (100% of the nutrients requirement, n = 12) or a restricted group (60% of the nutrients requirement, n = 12) between 45 and 100 days of gestation. Descendants were harvested at day 100 of gestation and at day 90 after birth to collect the femoris muscle tissue. Results: Maternal undernutrition increased (p<0.05) the fiber area of the vastus muscle in the fetuses and enhanced (p<0.01) the proportions of MyHCI and MyHCIIA fibers in offspring, while the proportion of MyHCIIX fibers was decreased (p<0.01). DNA methylation at the +530 cytosine-guanine dinucleotide (CpG) site of the myogenic factor 5 (MYF5) promoter in restricted fetuses was increased (p<0.05), but the methylation of the MYF5 gene at the +274,280 CpG site and of the myogenic differentiation (MYOD) gene at the +252 CpG site in restricted kids was reduced (p<0.05). mTOR protein signals were down-regulated (p<0.05) in the restricted offspring. Conclusion: Maternal undernutrition altered the muscle fiber type in offspring, but its relationship with methylation in the promoter regions of myogenic genes needs to be elucidated.

Association of Methylation of the RAR-β Gene with Cigarette Smoking in Non-Small Cell Lung Cancer with Southern-central Chinese Population

  • Li, Wen;Deng, Jing;Wang, Shuang-Shuang;Ma, Liang;Pei, Jiang;Zeng, Xiao-Xi;Tang, Jian-Xin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.24
    • /
    • pp.10937-10941
    • /
    • 2015
  • Pathogenesis of lung cancer is a complicated biological process including multiple genetic and epigenetic changes. Since cigarette smoking is confirmed as the most main risk factor of non-small cell lung cancer (NSCLC), the aim of this study was to determine whether tobacco exposure plays a role in gene methylation. Methylation of the RAR-${\beta}$ gene were detected using methylation-specific polymerase chain reaction in DNA from 167 newly diagnosed cases with NSCLC and corresponding 105 controls. A significant statistical association was found in the detection rate of the promoter methylation of RAR-${\beta}$ gene between NSCLC and controls ($x^2$=166.01; p<0.01), and hypermethylation of the RAR-${\beta}$ gene was significantly associated with smoking status (p=0.038, p<0.05). No relationship was found between RAR-${\beta}$ gene methylation and pathologic staging including clinical stage, cell type, gender and drinking (p>0.05), and the methylation of RAR-${\beta}$ gene rate of NSCLC was slightly higher in stages III+IV (80.0%) than in I+II (70.8%). Similar results were obtained for methylation of the RAR-${\beta}$ gene between squamous cell carcinoma (77.9%) and other cell type lung cancer (73.9%). These results showed that the frequency of methylation increased gradually with the development of clinical stage in smoking-associated lung cancer patients, and tobacco smoke may be play a potential role in RAR-${\beta}$ gene methylation in the early pathogenesis and process in lung cancer, particularly squamous cell carcinoma. Aberrant promoter methylation is considered to be a promising marker of previous carcinogen exposure and cancer risk.

Aberrant Promoter Methylation of Death-Associated Protein Kinase in Serum DNA from Lung Cancer Patients (원발성 폐암 환자의 혈청에서 DAP kinase 유전자의 Methylation 양상)

  • Lee, Jun Hee;Lee, Jung Wook;Jung, Kyung Sik;Kim, Ki Uk;Lee, Tae Kun;Lee, Kyung Woo;Na, Min-Ah;Jeon, Doo Soo;Choi, Young Min;Kim, Yun Seong;Lee, Min Ki;Park, Soon Kew
    • Tuberculosis and Respiratory Diseases
    • /
    • v.55 no.4
    • /
    • pp.378-387
    • /
    • 2003
  • Background : Promoter methylation of tumor suppressor genes is one of the key epigenetic changes in many human cancers. The aim of this study was to evaluate the promoter methylation status of the Death-associated protein(DAP) kinase gene, which played an important role in lung cancer, in the serum DNA of primary lung cancer patients. Methods : This study investigated the aberrant methylation of DAP kinase in the serum of 65 primary lung cancer patients by methylation-specific PCR (MSP). Results : Methylation in the serum was detected in 29 of 65(44.6%) for DAP kinase. There was no statistical association between methylation of DAP kinase and age, smoking history, histologic type, or stage. Methylation of DAP kinase was found more frequently in men (p=0.044). Conclusions : This study suggests that the aberrant methylation of the DAP kinase promoter is readily detectable in the serum DNA of lung cancer patients using MSP analysis.

Epigenetic Field for Cancerization

  • Ushijima, Toshikazu
    • BMB Reports
    • /
    • v.40 no.2
    • /
    • pp.142-150
    • /
    • 2007
  • Epigenetic alterations, represented by aberrant DNA methylation, are deeply involved in human cancers. In gastric cancers, tumor-suppressor genes are inactivated more frequently by promoter methylation than by mutations. We recently showed that H. pylori infection, a potent gastric carcinogenic factor, induces methylation of specific genes in the gastric mucosae. When the methylation levels were analyzed in the gastric mucosae of healthy volunteers, cases with a single gastric cancer, and cases with multiple gastric cancers, who have increasing levels of risks for gastric cancers, there was a significant increasing trend in the methylation levels among the individuals without current H. pylori infection. This finding unequivocally showed the presence of an epigenetic field for cancerization. The degree of the field defect was measured more conveniently using methylation levels of marker genes than using those of tumor-suppressor genes. The presence of an epigenetic field for cancerization has been indicated for liver, colon, Barrett's esophageal, lung, breast, and renal cancers. Since decreased transcription is involved in the specificity of methylated genes, it is likely that specific genes are methylated according to carcinogenic factors. These findings emphasize the usefulness of DNA methylation as a marker for past exposure to carcinogens and future risk of cancer development.

Promoter Methylation Status of DNA Repair Gene (hMLH1) in Gastric Carcinoma Patients of the Kashmir Valley

  • Wani, Majid;Afroze, Dil;Makhdoomi, Muzamil;Hamid, Iqra;Wani, Bilal;Bhat, Gulzar;Wani, Rauf;Wani, Khursheed
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.8
    • /
    • pp.4177-4181
    • /
    • 2012
  • Cancer is a multi-factorial disease and variation in genetic susceptibility, due to inherited differences in the capacity to repair mismatches in the genome, is an important factor in the development of gastric cancer (GC), for example. Epigenetic changes, including aberrant methylation of 5/CpG islands in the promoter regions of mismatch repair (MMR) genes like hMLH1, have been implicated in the development of various types of GC. In the present study we evaluated the role of hMLH1 promoter hypermethylation in Kashmiri GC patients and controls, and assessed correlations with various dietary and lifestyle factors. The study included 70 GC patients (56 males and 14 females; age ($mean{\pm}S.D$) $50{\pm}11.4$ years). Distinction between methylated and unmethylated was achieved with MS-PCR and DNA band patterns. The Chi-square test was applied to assess the risk due to promoter hypermethylation. We found a strikingly high frequency of promoter hypermethylation in GC cases than in normal samples (72.9% (51/70) in GC cases vs 20% (14/70) in normal samples (p=0.0001).We also observed a statistically significant association between methylated hMLH1 gene promoter and smoking, consumption of sundried vegetables and hot salted tea with the risk of GC. This study revealed that hMLH1 hypermethylation is strongly associated with GC and suggested roles for epigenetic changes in stomach cancer causation in the Kashmir valley.

Aberrant Methylation of p16 Tumor Suppressor Gene and Death-Associated Protein Kinase in Non-Small Cell Lung Carcinoma (비소세포폐암 조직에서 p16 종양억제유전자와 Death-Associated Protein Kinase의 Aberrant Methylation의 양상)

  • Kim, Yun-Seong;Lee, Min-Ki;Jung, Kyung-Sik;Kim, Ki-Uk;Kim, Young-Dae;Lee, Hyung-Ryul;Lee, Chang-Hoon;Seok, Ju-Won;Kim, Yong-Ki;Jun, Eun-Sook;Choi, Young-Min;Rha, Seo-Hee;Park, Soon-Kew
    • Tuberculosis and Respiratory Diseases
    • /
    • v.51 no.2
    • /
    • pp.108-121
    • /
    • 2001
  • Background : The $p16^{INK4a}$ (p16) twnor suppressor gene is frequently inactivated in hwnan non-small cell lung cancers (NSCLCs), predominantly through homozygous deletion or in association with aberrant promotor hypermethylation. Death-associated protein kinase (DAPK) gene influences interferon $\gamma$-induced apoptotic cell death and has important role in metastasis of lung cancer in animal model. Hypermethylation of promoter region of DAP kinase gene may suppress the expression of this gene. Methods : This study was performed to investigate the aberrant methylation of p16 or DAP kinase in 35 resected primary NSCLCs by methylation-specific PCR (MSP), and demonstrated frequency, diagnostic value and clinical implication of aberrant methylation of two genes. Results : Thirty-two cases were male patients, and 3 cases were female patients with an average age was 57. $8{\pm}10.5$ years. The histologic types of lung cancer were 22 of squamous cell carcinoma, 12 of adenocarcinoma, 1 of large cell carcinoma. Pathologic stages were 11 cases of stage I (1 IA, 10 IB), 13 cases of stage II (1 IIA, 12 IIB), and 11 cases of stage III (9 IIIA, 2 IIIB). Regarding for the cancer tissue, p16 aberrant methylation was noted in 13 case of 33 cases (39.4%), DAP kinase in 21 cases of 35 cases (60%). Age over 55 year was associated with p16 aberrant methylation significantly (p<0.05). Methylation status of two genes was not different by smoking history, histologic type, size of tumor, lymph node metastasis and disease progression of lung cancer. There was no correlation between p16 and DAP kinase hypermethylation. Conclusion: This investigation demonstrates that aberrant methylation of p16 tumor suppressor gene or DAP kinase showed relatively high frequency (74.3%) in NSCLCs, and that these genes could be a biologic marker for early detection of lung cancer.

  • PDF

The novel gene LRP15 is regulated by DNA methylation and confers increased efficiency of DNA repair of ultraviolet-induced DNA damage

  • Xu, Zhou-Min;Gao, Wei-Ran;Mei, Qi;Chen, Jian;Lu, Jing
    • BMB Reports
    • /
    • v.41 no.3
    • /
    • pp.230-235
    • /
    • 2008
  • LRP15 is a novel gene cloned from lymphocytic cells, and its function is still unknown. Bioinformatic data showed that LRP15 might be regulated by DNA methylation and had an important role in DNA repair. In this study, we investigate whether the expression of LRP15 is regulated by DNA methylation, and whether overexpression of LRP15 increases efficiency of DNA repair of UV-induced DNA damage in HeLa cells. The results showed (1) the promoter of LRP15 was hypermethylated in HeLa cells, resulting a silence of its expression. Gene expression was restored by a demethylating agent, 5-aza-2'-deoxycytidine, but not by a histone deacetylase inhibitor, trichostatin A; (2) overexpression of LRP15 inhibited HeLa cell proliferation, and the numbers of cells in the G2/M phase of the cell cycle in cells transfected with LRP15 increased about 10% compared with controls; (3) cyclin B1 level was much lower in cells overexpressing LRP15 than in control cells; and (4) after exposure to UV radiation, the LRP15-positive cells showed shorter comet tails compared with the LRP15-negative cells. From these results we conclude that the expression of LRP15 is controlled by methylation in its promoter in HeLa cells, and LRP15 confers resistance to UV damage and accelerates the DNA repair rate.

Increased Oxidative Stress and RUNX3 Hypermethylation in Patients with Hepatitis B Virus-Associated Hepatocellular Carcinoma (HCC) and Induction of RUNX3 Hypermethylation by Reactive Oxygen Species in HCC Cells

  • Poungpairoj, Poonsin;Whongsiri, Patcharawalai;Suwannasin, Surasit;Khlaiphuengsin, Apichaya;Tangkijvanich, Pisit;Boonla, Chanchai
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.13
    • /
    • pp.5343-5348
    • /
    • 2015
  • Promoter hypermethylation of the runt-related transcription factor 3 (RUNX3) gene is associated with increased risk of hepatocellular carcinoma (HCC). Oxidative stress plays a vital role in both carcinogenesis and progression of HCC. However, whether oxidative stress and RUNX3 hypermethylation in HCC have a cause-and-effect relationship is not known. In this study, plasma protein carbonyl and total antioxidant capacity (TAC) in patients with hepatitis B virus (HBV)-associated HCC (n=60) and age-matched healthy subjects (n=80) was determined. RUNX3 methylation in peripheral blood mononuclear cells (PBMC) of subjects was measured by methylation-specific PCR. Effect of reactive oxygen species (ROS) on induction of RUNX3 hypermethylation in HCC cells was investigated. Plasma protein carbonyl content was significantly higher, whereas plasma TAC was significantly lower, in HCC patients than healthy controls. Based on logistic regression, increased plasma protein carbonyl and decreased plasma TAC were independently associated with increased risk for HCC. PBMC RUNX3 methylation in the patient group was significantly greater than in the healthy group. RUNX3 methylation in hydrogen peroxide ($H_2O_2$)-treated HepG2 cells was significantly higher than in untreated control cells. In conclusion, increase in oxidative stress in Thai patients with HBV-associated HCC was demonstrated. This oxidative increment was independently associated with an increased risk for HCC development. RUNX3 in PBMC was found to be hypermethylated in the HCC patients. In vitro, RUNX3 hypermethylation was experimentally induced by $H_2O_2$. Our findings suggest that oxidative stress is a cause of RUNX3 promoter hypermethylation in HCC cells.