• Title/Summary/Keyword: Promising Index

Search Result 242, Processing Time 0.028 seconds

Multicity Seasonal Air Quality Index Forecasting using Soft Computing Techniques

  • Tikhe, Shruti S.;Khare, K.C.;Londhe, S.N.
    • Advances in environmental research
    • /
    • v.4 no.2
    • /
    • pp.83-104
    • /
    • 2015
  • Air Quality Index (AQI) is a pointer to broadcast short term air quality. This paper presents one day ahead AQI forecasting on seasonal basis for three major cities in Maharashtra State, India by using Artificial Neural Networks (ANN) and Genetic Programming (GP). The meteorological observations & previous AQI from 2005-2008 are used to predict next day's AQI. It was observed that GP captures the phenomenon better than ANN and could also follow the peak values better than ANN. The overall performance of GP seems better as compared to ANN. Stochastic nature of the input parameters and the possibility of auto-correlation might have introduced time lag and subsequent errors in predictions. Spectral Analysis (SA) was used for characterization of the error introduced. Correlational dependency (serial dependency) was calculated for all 24 models prepared on seasonal basis. Particular lags (k) in all the models were removed by differencing the series, that is converting each i'th element of the series into its difference from the (i-k)"th element. New time series is generated for all seasonal models in synchronization with the original time line & evaluated using ANN and GP. The statistical analysis and comparison of GP and ANN models has been done. We have proposed a promising approach of use of GP coupled with SA for real time prediction of seasonal multicity AQI.

Effects of Gas Composition on the Performance and Emissions of Compressed Natural Gas Engines

  • Min, Byung-Hyouk;Chung, Jin-Taek;Kim, Ho-Young;Park, Simsoo
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.219-226
    • /
    • 2002
  • Natural gas is considered to be a promising alternative fuel for passenger cars, truck transportation and stationary engines providing positive effects both on the environment and energy security. However, since the composition of natural gas fuel varies with location, climate and other factors, it is anticipated that such changes in fuel properties will affect emission characteristics and performance of CNG (Compressed Natural Gas) engines. The purpose of the present study is to investigate the effects of the difference in gas composition on the engine performance and emission characteristics. The results show that THC (Total Hydrocarbon) decreases with increasing Wl (Wobbe Index) and MCP (Maximum Combustion Potential). On the other hand, it is observed that NOx slightly increases as Wl and MCP increase. The TLHV (Total Lower Heating Value of Intake) is proposed in this study as a potential index for compatibility of gas fuels in a CNG engine. There is a variation in power up to 20% depending on the composition of gas when the A/F ratio and spark timing are flexed for a specific gas fuel.

Quantitative evaluation of through-thickness rectangular notch in metal plates based on lamb waves

  • Zhao, Na;Wu, Bin;Liu, Xiucheng;Ding, Keqin;Hu, Yanan;Bayat, Mahmoud
    • Structural Engineering and Mechanics
    • /
    • v.71 no.6
    • /
    • pp.751-761
    • /
    • 2019
  • Lamb wave technology is a promising technology in the field of structural health monitoring and can be applied in the detection and monitoring of defects in plate structures. Based on the reconstruction algorithm for the probabilistic inspection of damage (RAPID), a Lamb-based detection and evaluation method of through-thickness rectangular notches in metal plates was proposed in this study. The influences of through-thickness rectangular notch length and the angle between sensing path and notch length direction on signals were further explored through simulations and experiments. Then a damage index calculation method which focuses on both phase and amplitude difference between detected signals and baseline signals was proposed. Based on the damage index difference between two vertically crossed sensing paths which pass through the notch in a sensor network, the notch direction identification method was proposed. In addition, the notch length was determined based on the damage index distribution along sensing paths. The experimental results showed that the image reconstructed with the proposed method could reflect the information for the evaluation of notches.

Developing a performance index for efficient improving techniques and implement of Smart Water Management (스마트물관리기술 평가툴 개발)

  • Lim, Kwangsuop;Lee, Namsoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.578-578
    • /
    • 2016
  • In the past decade, many countries developed varies promising theories, methodologies and technologies for water resources management, such as Smart Water in Korea, eWater in Australia, Intelligent Water in Untied States, and Internet of Water in China. It is no exaggeration to say that Smart Water Management(SWM) will have a major role to play in addressing the global water challenges in the background of climate change, population growth and rapid urbanization. As a result, we can see major shifts taking place in the structure of the water industry, with a need for new approaches, skills, and water management policies. All these point towards a brighter future for the smart water sector and a new water paradigm, with applications and potential throughout the water cycle. However, each countries have their technology and industry standard system which may swift similar innovation and technology into different channels. In that sense, developing a common performance index and standard docking adapter for assessing Smart Water Management Initiatives(SWMI) is crucial for drawing a linkage of SWMI and SWMs to a way to implement advanced technology across Asia and Pacific. The performance index and standard docking adapter will facilitate quantitative and qualitative effects of utilized SWM techniques.

  • PDF

The Outcomes of Open Ankle Fractures in Patients Managed by Early or Delayed Definitive Fixation: A Comparative Analysis of 73 Patients

  • Raghavendra Kaganur;Bhaskar Sarkar;Pragadeeshwaran Jaisankar;Nirvin Paul;Md Quamar Azam;Anurag Bhakhar
    • Journal of Korean Foot and Ankle Society
    • /
    • v.28 no.1
    • /
    • pp.8-14
    • /
    • 2024
  • Purpose: Ankle fracture fixation is the gold standard of treatment but it does have its own complications. There is inadequate data regarding the comparative effectiveness of early vs. delayed fixation for open ankle fracture outcomes. This study compares the clinical and functional outcomes of open ankle fractures treated by early or delayed definitive fixation and identifies the limitations of both methods. Materials and Methods: All 73 patients enrolled in the study underwent surgical intervention within 24 hours of injury. The early fixation group (group A) consisting of 39 patients underwent definitive fixation as an index procedure, while the delayed fixation group (group B) consisted of 34 patients who underwent debridement and external fixator application as an index procedure and definitive fixation when soft tissue condition was conducive. All patients were evaluated at 2, 6, and 12 weeks postoperatively and then three monthly for a year. Results: Enneking and American Orthopaedic Foot and Ankle Society scores were markedly higher in the early fixation group at 6 months postoperatively (p-values <0.001 and 0.011, respectively). However, no discernible intergroup difference was evident at 12 months postoperatively. Between 6 and 12 months, group functional outcome scores were significantly different. At 6 months, there was a substantial difference in dorsiflexion between the two groups (p-values 0.001 and <0.001, respectively), but no difference was observed at 12 months postoperatively. At 6 and 12 months, group average plantar flexions were non-significantly different. Conclusion: Early definitive fixation of complex ankle fractures using a targeted approach produced promising results for lower grade open fractures (grades 1 and 2), and delayed definitive fixation, after initial external fixation to allow for soft tissue stabilization, produced promising results for higher grade open fractures (grades 3A and 3B). At 12-month follow-ups, clinical and functional outcomes achieved using these strategies were equivalent.

Applicability of DGCI (Dark Green Color Index) to Assess Potential Impacts of CO2 Leakage from the Geological Storage Site (이산화탄소 지중저장 시설의 잠재적 누출 판단을 위한 DGCI(Dark Green Color Index) 적용 가능성 평가)

  • Yoo, Sin Yee;Song, Yoon Jin;Oh, Hee Joo;Kim, You Jin;Yoo, Ga Young
    • Journal of Climate Change Research
    • /
    • v.7 no.3
    • /
    • pp.351-356
    • /
    • 2016
  • The carbon capture and storage (CCS), which collects and stores carbon dioxide in a geological site, is a promising option to mitigate climate change. However, there is the possibility of carbon dioxide leakage from the soil in the steps of collecting, transporting, and storing. To ensure the feasibility of this technology, it is important to monitor the leakage of carbon dioxide and to assess the potential impacts. As plants are sensitive to the changes in carbon dioxide in the soil environment, we can utilize plant parameter to detect the carbon dioxide leakage. Currently, chlorophyll a content is a conventional index indicating the changes in plants, however, this method is labor intensive and it only utilizes a small portion of leaves. To overcome its limitations, a simple spectroscopic parameter, DGCI (dark green color index), was suggested as an easy and quick indicator. In this study, we compared the values of chlorophyll a contents with DGCI from the experiment investigating the impacts of high underground $CO_2$ on grape plants. Results suggest that DGCI had high correlation with chlorophyll a contents and it has high potential to be utilized as an easy indicator to monitor plants' responses to $CO_2$ treatment.

Analysis of ROX Index, ROX-HR Index, and SpO2/FIO2 Ratio in Patients Who Received High-Flow Nasal Cannula Oxygen Therapy in Pediatric Intensive Care Unit (고유량 비강 캐뉼라 산소요법을 받은 소아중환자실 환아의 ROX Index와 ROX-HR Index 및 SpO2/FIO2 Ratio분석)

  • Choi, Sun Hee;Kim, Dong Yeon;Song, Byung Yun;Yoo, Yang Sook
    • Journal of Korean Academy of Nursing
    • /
    • v.53 no.4
    • /
    • pp.468-479
    • /
    • 2023
  • Purpose: This study aimed to evaluate the use of the respiratory rate oxygenation (ROX) index, ROX-heart rate (ROX-HR) index, and saturation of percutaneous oxygen/fraction of inspired oxygen ratio (SF ratio) to predict weaning from high-flow nasal cannula (HFNC) in patients with respiratory distress in a pediatric intensive care unit. Methods: A total of 107 children admitted to the pediatric intensive care unit were enrolled in the study between January 1, 2017, and December 31, 2021. Data on clinical and personal information, ROX index, ROX-HR index, and SF ratio were collected from nursing records. The data were analyzed using an independent t-test, χ2 test, Mann-Whitney U test, and area under the curve (AUC). Results: Seventy-five (70.1%) patients were successfully weaned from HFNC, while 32 (29.9%) failed. Considering specificity and sensitivity, the optimal cut off points for predicting treatment success and failure of HFNC oxygen therapy were 6.88 and 10.16 (ROX index), 5.23 and 8.61 (ROX-HR index), and 198.75 and 353.15 (SF ratio), respectively. The measurement of time showed that the most significant AUC was 1 hour before HFNC interruption. Conclusion: The ROX index, ROX-HR index, and SF ratio appear to be promising tools for the early prediction of treatment success or failure in patients initiated on HFNC for acute hypoxemic respiratory failure. Nurses caring for critically ill pediatric patients should closely observe and periodically check their breathing patterns. It is important to continuously monitor three indexes to ensure that ventilation assistance therapy is started at the right time.

Effect of Additives on the Powder Characteristics of Peonja Dry Elixir (편자 고형엘릭실제의 분체 특성에 미치는 부형제의 영향)

  • Yong, Chul-Soon;Lee, Jong-Dal;Kim, Chong-Kook;Choi, Han-Gon
    • Journal of Pharmaceutical Investigation
    • /
    • v.31 no.2
    • /
    • pp.81-87
    • /
    • 2001
  • The purpose of this study was to investigate the effect of additives on the powder characteristics of peonja dry elixir. Peonja dry elixirs were prepared with various amounts of dextrin using a spray-dryer, and their powder characteristics such as flow, cohesion and compressibility were evaluated as an angle of repose, cohesion index and compressibility index, respectively. Their powder characteristics were not significantly different from one another, indicating that the hydrophilic dextrin, a base of dry elixir hardly affected their powder characteristics. Peonja dry elixirs were prepared with 10% dextrin and various amounts of additives such as mannitol (hydrophilic excipient), sodium lauryl sulfate (surfactant), colloidal silica (hydrophobic excipient) and HPMC (polymer), respectively, and their angle of repose, cohesion index and compressibility index were measured. The powder characteristics of peonja dry elixirs prepared with mannitol were not significantly different from one another, indicating that the mannitol scarcely improved the powder characteristics of peonja dry elixirs. The angle of repose and cohesion index of peonja dry elixirs significantly decreased with increasing amount of sodium lauryl sulfate to 0.3% followed by no significant changes in them. The cohesion index of peonja dry elixir significantly decreased with increasing amount of colloidal silica. The angle of repose and cohesion index of peonja dry elixir significantly decreased with increasing amount of HPMC to 0.3% followed by an abrupt increase in them. However, the compressibility index of peonja dry elixir significantly increased with increasing amount of HPMC to 0.3% followed by an abrupt decrease in them. Our results suggested that a small amount of sodium lauryl sulfate, colloidal silica and HPMC improved markedly the powder characteristics of peonja dry elixirs due to forming stronger and less hygroscopic shell of peonja dry elixirs. Among the peonja dry elixirs studied, the peonja dry elixir prepared with 0.3% sodium lauryl sulfate and 0.3% HPMC had the lowest angle of repose of $27^{\circ}$ and cohesion index of 37.8%, and the highest compressibility index of 38.7%, respectively. Thus, sodium lauryl sulfate and HPMC appear to be promising additives for peonja dry elixir, if used in adequate amounts.

  • PDF

The Doping Concentration and Physical Properties Measurement of Silicon Wafer Using Terahertz Wave (테라헤르츠파를 이용한 실리콘 웨이퍼의 도핑 정도와 물리적 특성 측정에 관한 연구)

  • Park, Sung Hyeon;Oh, Gyung Hwan;Kim, Hak Sung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.37 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • In this study, a terahertz time domain spectroscopy (THz-TDS) imaging technique was used to measure doping concentration and physical properties (such as refractive index and permittivity) of the doped silicon (Si) wafers. The transmission and reflection modes with an incidence angle of $30^{\circ}$ were employed to determine the physical properties of the doped Si wafers. The doping concentrations of the prepared Si wafers were varied from $10^{14}$ to $10^{18}$ in both N-type and P-type cases. Finally, the correlation between the doping concentration and the power of the THz wave was determined by measuring the powers of the transmitted and reflected THz waves of the doped Si wafers. Additionally, the doped thickness, the refractive index, and permittivity of each doped Si wafer were calculated using the THz time domain waveform. The results indicate that the THz-TDS imaging technique is potentially a promising technique to measure the doping concentration as well as other optical properties (such as the refractive index and permittivity) of the doped Si wafer.

Application of CBD Zinc Sulfide (ZnS) Film to Low Cost Antireflection Coating on Large Area Industrial Silicon Solar Cell

  • U. Gangopadhyay;Kim, Kyung-Hea;S.K. Dhungel;D. Mangalaraj;Park, J.H.;J. Yi
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.1
    • /
    • pp.1-6
    • /
    • 2004
  • Zinc sulfide is a semiconductor with wide band gap and high refractive index and hence promising material to be used as ARC on commercial silicon solar cells. Uniform deposition of zinc sulfide (ZnS) by using chemical bath deposition (CBD) method over a large area of silicon surface is an emerging field of research because ZnS film can be used as a low cost antireflection coating (ARC). The main problem of the CBD bath process is the huge amount of precipitation that occurs during heterogeneous reaction leading to hamper the rate of deposition as well as uniformity and chemical stoichiometry of deposited film. Molar concentration of thiorea plays an important role in varying the percentage of reflectance and refractive index of as-deposited CBD ZnS film. Desirable rate of film deposition (19.6 ${\AA}$ / min), film uniformity (Std. dev. < 1.8), high value of refractive index (2.35), low reflectance (0.655) have been achieved with proper optimization of ZnS bath. Decrease in refractive index of CBD ZnS film due to high temperature treatment in air ambiance has been pointed out in this paper. Solar cells of conversion efficiency 13.8 % have been successfully achieved with a large area (103 mm ${\times}$ 103 mm) mono-crystalline silicon wafers by using CBD ZnS antireflection coating in this modified approach.