Prominence of speech, which is often called 'accent,' affects the fluency of speaking American English greatly. In this paper, we present an accurate prominence detection method that can be utilized in computer-aided language learning (CALL) systems. We employed pitch movement, overall syllable energy, 300-2200 Hz band energy, syllable duration, and spectral and temporal correlation as features to model the prominence of speech. After the features for vowel syllables of speech were extracted, prominent syllables were classified by SVM (Support Vector Machine). To further improve accuracy, the differences in characteristics of neighboring syllables were added as additional features. We also applied a speech recognizer to extract more precise syllable boundaries. The performance of our prominence detector was measured based on the Intonational Variation in English (IViE) speech corpus. We obtained 84.9% accuracy which is about 10% higher than previous research.
Journal of Institute of Control, Robotics and Systems
/
v.16
no.7
/
pp.625-631
/
2010
This paper proposes lane recognition algorithm using lane prominence technique to extract lane candidate. The lane prominence technique is combined with embossing effect, lane thickness check, and lane extraction using mask. The proposed lane recognition algorithm consists of preprocessing, lane candidate extraction and lane recognition. First, preprocessing is executed, which includes gray image acquisition, inverse perspective transform and gaussian blur. Second, lane candidate is extracted by using lane prominence technique. Finally, lane is recognized by using hough transform and least square method. To evaluate the proposed lane recognition algorithm, this algorithm was applied to the detection of lanes in the rainy and night day. The experiment results showed that the proposed algorithm can recognize lane in various environment. It means that the algorithm can be applied to lane recognition to drive unmanned vehicles.
The purpose of this study is to observe how Korean listeners detect a target phoneme with 'Focus' represented by prosodic prominence and question-induced semantic emphasis, and with intonational manipulation. According to the automated phoneme detection task using E-Prime, the Korean listeners detected phoneme targets more rapidly when the target-bearing words were in prominence position and in question-induced position. However, the presence of question-induced semantic emphasis reduced the prominence effect, so two effects interacted: when question-induced emphasis were primarily given as a cue, prominence which was given as secondary cue affected less to fine the new information. Besides, the intonation with manipulation was responded to faster than without manipulation.
The purpose of this study is to observe how Korean listeners detect a target phoneme with 'Focus' represented by prosodic prominence and question-induced semantic emphasis. According to the automated phoneme detection task using E-Prime, Korean listeners detected phoneme targets more rapidly when the target-bearing words were in prominence position and in question-induced position. However, when phoneme targets were in prominence position, response time was much faster than in question-induced position. The results suggest that the prosodic prominence which is explicit method of focus representation be more effective than question-inducing, implicit method of it, in phoneme detecting.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.9
no.3
/
pp.1173-1192
/
2015
The Support Vector Data Description (SVDD) has achieved great success in anomaly detection, directly finding the optimal ball with a minimal radius and center, which contains most of the target data. The SVDD has some limited classification capability, because the hyper-sphere, even in feature space, can express only a limited region of the target class. This paper presents an anomaly detection algorithm for mitigating the limitations of the conventional SVDD by finding the minimum volume enclosing ellipsoid in the feature space. To evaluate the performance of the proposed approach, we tested it with intrusion detection applications. Experimental results show the prominence of the proposed approach for anomaly detection compared with the standard SVDD.
Jiheon Song;Semin Joung;Young-Chul Ghim;Sang-hee Hahn;Juhyeok Jang;Jungpyo Lee
Nuclear Engineering and Technology
/
v.55
no.1
/
pp.100-108
/
2023
In this study, a neural network model inspired by a one-dimensional convolution U-net is developed to automatically accelerate edge localized mode (ELM) detection from big diagnostic data of fusion devices and increase the detection accuracy regardless of the hyperparameter setting. This model recognizes the input signal patterns and overcomes the problems of existing detection algorithms, such as the prominence algorithm and those of differential methods with high sensitivity for the threshold and signal intensity. To train the model, 10 sets of discharge radiation data from the KSTAR are used and sliced into 11091 inputs of length 12 ms, of which 20% are used for validation. According to the receiver operating characteristic curves, our model shows a positive prediction rate and a true prediction rate of approximately 90% each, which is comparable to the best detection performance afforded by other algorithms using their optimized hyperparameters. The accurate and automatic ELM-burst detection methodology used in our model can be beneficial for determining plasma properties, such as the ELM frequency from big data measured in multiple experiments using machines from the KSTAR device and ITER. Additionally, it is applicable to feature detection in the time-series data of other engineering fields.
Hinode/XRT has observed coronal mass ejections (CMEs) since it launched on Sep. 2006. Observing programs of Hinode/XRT, called 'CME watch', perform several binned observations to obtain large FOV observations with long exposure time that allows the detection of faint CME plasmas in high temperatures. Using those observations, we determine the upper limit to the mass of hot CME plasma using emission measure by assuming the observed plasma structure. In some events, an associated prominence eruption and CME plasma were observed in EUV observations as absorption or emission features. The absorption feature provides the lower limit to the cold mass while the emission feature provides the upper limit to the mass of observed CME plasma in X-ray and EUV passbands. In addition, some events were observed by coronagraph observations (SOHO/LASCO, STEREO/COR1) that allow the determination of total CME mass. However, some events were not observed by the coronagraphs possibly because of low density of the CME plasma. We present the mass constraints of CME plasma and associated prominence as determined by emission and absorption in EUV and X-ray passbands, then compare this mass to the total CME mass as derived from coronagraphs.
Journal of the Korea Society of Computer and Information
/
v.28
no.10
/
pp.17-25
/
2023
In this paper, we propose a lightweight deep learning architecture tailored for efficient text detection in fashion design sketch images. Given the increasing prominence of Digital Transformation in the fashion industry, there is a growing emphasis on harnessing digital tools for creating fashion design sketches. As digitization becomes more pervasive in the fashion design process, the initial stages of text detection and recognition take on pivotal roles. In this study, a lightweight network was designed by building upon existing text detection deep learning models, taking into consideration the unique characteristics of apparel design drawings. Additionally, a separately collected dataset of apparel design drawings was added to train the deep learning model. Experimental results underscore the superior performance of our proposed deep learning model, outperforming existing text detection models by approximately 20% when applied to fashion design sketch images. As a result, this paper is expected to contribute to the Digital Transformation in the field of clothing design by means of research on optimizing deep learning models and detecting specialized text information.
Electrical stimulation through retinal prosthesis elicits both short and long-latency retinal ganglion cell (RGC) spikes. Because the short-latency RGC spike is usually obscured by electrical stimulus artifact, it is very important to isolate spike from stimulus artifact. Previously, we showed that topographic prominence (TP) discriminator based algorithm is valid and useful for artifact subtraction. In this study, we compared the performance of forward backward (FB) filter only vs. TP-adopted FB filter for artifact subtraction. From the extracted retinae of rd1 mice, we recorded RGC spikes with $8{\times}8$ multielectrode array (MEA). The recorded signals were classified into four groups by distances between the stimulation and recording electrodes on MEA (200-400, 400-600, 600-800, $800-1000{\mu}m$). Fifty cathodic phase-$1^{st}$ biphasic current pulses (duration $500{\mu}s$, intensity 5, 10, 20, 30, 40, 50, $60{\mu}A$) were applied at every 1 sec. We compared false positive error and false negative error in FB filter and TP-adopted FB filter. By implementing TP-adopted FB filter, short-latency spike can be detected better regarding sensitivity and specificity for detecting spikes regardless of the strength of stimulus and the distance between stimulus and recording electrodes.
Alshehri, Abdulrahman Mohammed;Fenais, Mohammed Saeed
International Journal of Computer Science & Network Security
/
v.22
no.10
/
pp.237-245
/
2022
The prominence of IoTs (Internet of Things) and exponential advancement of computer networks has resulted in massive essential applications. Recognizing various cyber-attacks or anomalies in networks and establishing effective intrusion recognition systems are becoming increasingly vital to current security. MLTs (Machine Learning Techniques) can be developed for such data-driven intelligent recognition systems. Researchers have employed a TFDNNs (Tensor Flow Deep Neural Networks) and DCNNs (Deep Convolution Neural Networks) to recognize pirated software and malwares efficiently. However, tuning the amount of neurons in multiple layers with activation functions leads to learning error rates, degrading classifier's reliability. HTFDNNs ( Hybrid tensor flow DNNs) and MRNs (Modified Residual Networks) or Resnet CNNs were presented to recognize software piracy and malwares. This study proposes HTFDNNs to identify stolen software starting with plagiarized source codes. This work uses Tokens and weights for filtering noises while focusing on token's for identifying source code thefts. DLTs (Deep learning techniques) are then used to detect plagiarized sources. Data from Google Code Jam is used for finding software piracy. MRNs visualize colour images for identifying harms in networks using IoTs. Malware samples of Maling dataset is used for tests in this work.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.