• Title/Summary/Keyword: Prokaryotes

Search Result 80, Processing Time 0.025 seconds

Applications of Transposon-Based Gene Delivery System in Bacteria

  • Choi, Kyoung-Hee;Kim, Kang-Ju
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권3호
    • /
    • pp.217-228
    • /
    • 2009
  • Mobile genetic segments, or transposons, are also referred to as jumping genes as they can shift from one position in the genome to another, thus inducing a chromosomal mutation. According to the target site-specificity of the transposon during a transposition event, the result is either the insertion of a gene of interest at a specific chromosomal site, or the creation of knockout mutants. The former situation includes the integration of conjugative transposons via site-specific recombination, several transposons preferring a target site of a conserved AT-rich sequence, and Tn7 being site-specifically inserted at attTn7, the downstream of the essential glmS gene. The latter situation is exploited for random mutagenesis in many prokaryotes, including IS (insertion sequence) elements, mariner, Mu, Tn3 derivatives (Tn4430 and Tn917), Tn5, modified Tn7, Tn10, Tn552, and Ty1, enabling a variety of genetic manipulations. Randomly inserted transposons have been previously employed for a variety of applications such as genetic footprinting, gene transcriptional and translational fusion, signature-tagged mutagenesis (STM), DNA or cDNA sequencing, transposon site hybridization (TraSH), and scanning linker mutagenesis (SLM). Therefore, transposon-mediated genetic engineering is a valuable discipline for the study of bacterial physiology and pathogenesis in living hosts.

tRNA 염기 순서를 이용한 계통학적 연구 (Construction of a Phylogenetic Tree from tRNA Sequences)

  • 이병재;이동훈;김영준;강현삼
    • 미생물학회지
    • /
    • 제24권4호
    • /
    • pp.400-405
    • /
    • 1986
  • 이미 발표된 각 시료들의 tRNAAn 염기 서열을 이용하여 세통학적 연구플 하였나. archaebacterium안 H. volcano가 진핵생물과 연계된 결과는 진핵생물이 eubacteria와의 공통척 조상에셔 분화되지 않았음을 세시하며 Phage $T_{4}$$T_{s}$,의 연계 순서는 그들이 각각 독럽적으로 숙주로부터 분화되였음을 내타낸다. tRNA의 염기 순서의 상관관계를 이용한 연구 결과가 기존의 다른 연구 결고 및 고생물학적 기록들과도 일치함을 알 수 있었다.

  • PDF

Cloning and Characterization of S-Adenosyl-L-methionine synthetase gene from Saccharomyces cerevisiae

  • Ko, Kwon-Hye;Yoon, Gee-Sun;Choi, Gi-Sub;Suh, Joo-Won;Ryu, Yeon-Woo
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2005년도 생물공학의 동향(XVII)
    • /
    • pp.301-304
    • /
    • 2005
  • S-Adenosyl-L-Methionine(SAM) has an important role for DNA methylation and cell signaling. SAM was synthesized from methionine and ATP by SAM synthetase and play an pivotal function in the primary and secondary metabolism of cells. Recent studies have revealed in the effect of SAM in case of morphological differentiation in both eukaryotes and prokaryotes. We isolated SAM gene from Saccharomyces cerevisiae and cloned it into expression vector for E. coli respectively. An 1.15 kb SAM-s gene fragment was isolated by Low-strigency PCR using ORF primer. By the analysed primary sequence deduced from DNA sequence, this gene included conserved domains similar with other well-known SAM synthetase. First of all, SAM synthetase gene cloned pGEM-T vector and subcloned into histidine tagging system to purify the expressed protein using metal chelating resin. Typical characteristic analysis of this enzyme is underway.

  • PDF

새로운 선발 마커 D-아미노산 산화효소 유전자를 이용한 식물 형질전환 (D-amino Acid Oxidase (DAO) Gene as a Novel Selection Marker for Plant Transformation)

  • 임선형;우희종;이시명;진용문;조현석
    • Journal of Plant Biotechnology
    • /
    • 제34권1호
    • /
    • pp.31-36
    • /
    • 2007
  • Though higher plants car not metabolize D-amino acid, many prokaryotes and eukaryotes have the D-amino acid metabolism. Therefore, we transformed tobacco plants with D-amino acid oxidase (DAO), which can metabolize D-amino acid, and confirmed that transgenic tobacco plants might metabolize D-amino acid. Transgenic tobacco plants were survived a high concentration of D-serine, however non-transgenic plants were not grown on D-serine medium. From Southern and Northern blot analysis, transgenic tobacco plants selected on D-serine medium were confirmed by insert and expression of transgene. $T_{1}$ tobacco seeds derived $T_{0}$ tobacco plants selfing were grown on D-serine medium and showed normal phenotype compared to wild tobacco plants. Transgenic tobacco plants displayed the metabolic capability of D-serine. Therefore, we suggested that DAO is useful selectable marker gene for plant transformation.

Microorganism lipid droplets and biofuel development

  • Liu, Yingmei;Zhang, Congyan;Shen, Xipeng;Zhang, Xuelin;Cichello, Simon;Guan, Hongbin;Liu, Pingsheng
    • BMB Reports
    • /
    • 제46권12호
    • /
    • pp.575-581
    • /
    • 2013
  • Lipid droplet (LD) is a cellular organelle that stores neutral lipids as a source of energy and carbon. However, recent research has emerged that the organelle is involved in lipid synthesis, transportation, and metabolism, as well as mediating cellular protein storage and degradation. With the exception of multi-cellular organisms, some unicellular microorganisms have been observed to contain LDs. The organelle has been isolated and characterized from numerous organisms. Triacylglycerol (TAG) accumulation in LDs can be in excess of 50% of the dry weight in some microorganisms, and a maximum of 87% in some instances. These microorganisms include eukaryotes such as yeast and green algae as well as prokaryotes such as bacteria. Some organisms obtain carbon from $CO_2$ via photosynthesis, while the majority utilizes carbon from various types of biomass. Therefore, high TAG content generated by utilizing waste or cheap biomass, coupled with an efficient conversion rate, present these organisms as bio-tech 'factories' to produce biodiesel. This review summarizes LD research in these organisms and provides useful information for further LD biological research and microorganism biodiesel development.

Variation in Microbial Biomass and Community Structure in Sediments of Peter the Great Bay (Sea of Japan/East Sea), as Estimated from Fatty Acid Biomarkers

  • Zhukova Natalia V.
    • Ocean Science Journal
    • /
    • 제40권3호
    • /
    • pp.145-153
    • /
    • 2005
  • Variation in the microbial biomass and community structure found in sediment of heavily polluted bays and the adjacent unpolluted areas were examined using phospholipid fatty acid analysis. Total microbial biomass and microbial community structure were responding to environmental determinants, sediment grain size, depth of sediment, and pollution due to petroleum hydrocarbons. The marker fatty acids of microeukaryotes and prokaryotes - aerobic, anaerobic, and sulfate-reducing bacteria - were detected in sediments of the areas studied. Analysis of the fatty acid profiles revealed wide variations in the community structure in sediments, depending on the extent of pollution, sediment depth, and sediment grain size. The abundance of specific bacterial fatty acids points to the dominance of prokaryotic organisms, whose composition differed among the stations. Fatty acid distributions in sediments suggest the high contribution of aerobic bacteria. Sediments of polluted sites were significantly enriched with anaerobic bacteria in comparison with clean areas. The contribution of this bacterial group increased with the depth of sediments. Anaerobic bacteria were predominantly present in muddy sediments, as evidenced from the fatty acid profiles. Relatively high concentrations of marker fatty acids of sulfate-reducing bacteria were associated with organic pollution in this site. Specific fatty acids of microeukaryotes were more abundant in surface sediments than in deeper sediment layers. Among the microeukaryotes, diatoms were an important component. Significant amounts of bacterial biomass, the predominance of bacterial biomarker fatty acids with abundance of anaerobic and sulfate-reducing bacteria are indicative of a prokaryotic consortium responsive to organic pollution.

Cloning and Characerization of the Ribosomal RNA Gene from Gonyaulax polyedra

  • Lee, Hee-Gyun;Lee, Ji-Yeon;Lee, Dong-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • 제11권3호
    • /
    • pp.515-523
    • /
    • 2001
  • The dinoflagellates have some primitive nuclear features and are evolutionarily intermediate between prokaryotes and eukaryotes. The small subunit ribosomal RAN gene, the 5.8S ribosomal RNA gene, and the internal transcribed spacer (ITS) of Gonyaulax polyedra were cloned, and their sequences were analyzed to better understand their evolutionary position. The small subunit ribosomal RNA gene was 1,794 nt long, the large subunit ribosomal RNA gene was approximately 3,500 nt long, and the 5.8S ribosomal RNA gene was 159 nt long. The first internal transcribed spacer (ITS1) was 191 nt long, and the second internal transcribed spacer (ITS2) was 185 nt long. The intergenic spacer of the ribosomal RNA gene (IGS) was about 2,200 nt long, indicating that 5,800 nt of transcribed sequences were separated by roughly 2,200 nt of intergenic spacer. The ribosomal RNA genes were repeated many times and arranged in a head-to-tail, tandemly repeated manner. The repeating unit of ribosomal RNA gene of G. polyedra was proposed to be 8,000 nt long. Based on the lengths of ribosomal RNA, sequence alignments with representative organisms, and phylogenetic analysis on ribosomal RNA, G. polyedra appears to be one of the alveolates branched from the eukaryotic crown and, among dinoflagellates, it seems to not have emerged early.

  • PDF

Introns: The Functional Benefits of Introns in Genomes

  • Jo, Bong-Seok;Choi, Sun Shim
    • Genomics & Informatics
    • /
    • 제13권4호
    • /
    • pp.112-118
    • /
    • 2015
  • The intron has been a big biological mystery since it was first discovered in several aspects. First, all of the completely sequenced eukaryotes harbor introns in the genomic structure, whereas no prokaryotes identified so far carry introns. Second, the amount of total introns varies in different species. Third, the length and number of introns vary in different genes, even within the same species genome. Fourth, all introns are copied into RNAs by transcription and DNAs by replication processes, but intron sequences do not participate in protein-coding sequences. The existence of introns in the genome should be a burden to some cells, because cells have to consume a great deal of energy to copy and excise them exactly at the correct positions with the help of complicated spliceosomal machineries. The existence throughout the long evolutionary history is explained, only if selective advantages of carrying introns are assumed to be given to cells to overcome the negative effect of introns. In that regard, we summarize previous research about the functional roles or benefits of introns. Additionally, several other studies strongly suggesting that introns should not be junk will be introduced.

세균의 Peptide Deformylase(PDF)를 억제하는 새로운 항균물질의 스크리닝 (Screening of New Antibiotics Inhibiting Bacterial Peptide Deformylase (PDF))

  • 곽진환;김현주;설민정;서병선;이종국;최수영
    • 약학회지
    • /
    • 제47권3호
    • /
    • pp.184-189
    • /
    • 2003
  • Peptide deformylase (PDF) is essential and unique to bacteria, thus making it an attractive target for the discovery of novel antibacterial drugs. PDF deformylates the N-formylmethionine of newly synthesized polypeptides in prokaryotes. In this study, a pdf gene from Staphylococcus aureus 6538p was cloned in pET-14b vector and PDF protein was over-produced in Escherichia coli BL21 (DE3). NH$_2$-terminal His-tagged PDF protein was purified by nickel-nitrilotriacetic acid (Ni-NTA) metal-affinity chromatography. Enzymatic activity of purified 6xHis-tagged PDF was tested on the substrate (formyl-Methionine-Alanine-Serine) by formate dehydrogenase-coupled spectrometric assay of peptide deformylase. For the discovery of new PDF inhibitors from chemical libraries and culture broths of soil bacteria, a target-oriented screening system using a 96-well plate was developed. About 3,000 commercial chemical libraries were tested in this screening system, and 2 chemicals (0.07%) among them showed an inhibitory activity against PDF enzyme. This result showed that a new screening system can be used for the discovery of new PDF inhibitors.

nif-Gene Organization and Nucleotide Sequence of nifV, nifH, D, K and nifE from Frankia Strain FaCl

  • An, Chung-Sun
    • 한국동물학회:학술대회논문집
    • /
    • 한국동물학회 1995년도 한국생물과학협회 학술발표대회
    • /
    • pp.120-120
    • /
    • 1995
  • The total size of the pF AR1, a genomic clone of Frankia FaCI, was estimated to be about 44Kb by summation of the individual fragment length generated by single or double restriction enzymes. Southern hybridization analyses with Azotobacter vinelandii nif-genes as probes and partial sequencing analyses of the subclones revealed that organization of the nif-gene in the FaCI strain was nifV, H, D, K, E, N, X, W, B. The organization of the structural genes for nitrogenase is the same in this Frankia strain as it is in most other nitrogen-fixing prokaryotes but the positioning of the nifV-like gene relative to the nifHDK cluster differs. A consensus nif-promoter-like sequence, found at 5' of nifH, was not detected upstream of the niJV-like gene. nifV-like gene contained a ORF of 1206 NT encoding 401 amino acids. The nucleotide sequence and deduced amino acid sequence of the gene exhibit homology value of 65% and 41% with that from A vinelandii, respectively. The putative Shine-Dargamo sequences were present preceding nitK, nifH, D, K, and nifE, and in nitK gene putative start codon GTG was detected instead of A TG. The nucleotide and amino acid sequence of niIK of FaCI showed 82% and 76% homolgy with those of Frankia HFPCc 13, respectively. Amino acid sequence of niIK showed 69% and 61% homology with those of A vinelandii, Klebsiella pnewnoniae, respectively, while that of nifE 73% and 71%, respecti vely.i vely.

  • PDF