• Title/Summary/Keyword: Projection scenarios

Search Result 81, Processing Time 0.029 seconds

Current Status and Future Challenges of the National Population Projection in South Korea Concerning Super-Low Fertility Patterns (국제비교를 통해 바라본 한국의 장래인구추계 현황과 전망)

  • Jun, Kwang-Hee;Choi, Seul-Ki
    • Korea journal of population studies
    • /
    • v.33 no.2
    • /
    • pp.85-111
    • /
    • 2010
  • South Korea has experienced a rapid fertility decline and notable mortality improvement. As the drop in TFR was quicker and greater in terms of tempo and magnitude, it cast a new challenge of population projection - how to improve the forecasting accuracy in the country with a super-low fertility pattern. This study begin with the current status of the national population projection as implemented by Statistics Korea by comparing the 2009 interim projection with the 2006 official national population projection. Secondly, this study compare the population projection system including projection agencies, projection horizons, projection intervals, the number of projection scenarios, and the number of assumptions on fertility, mortality and international migration among super-low fertility countries. Thirdly we illustrate a stochastic population projection for Korea by transforming the population rates into one parameter series. Finally we describe the future challenges of the national population projection, and propose the projection scenarios for the 2011 official population projection. To enhance the accuracy, we suggest that Statistics Korea should update population projections more frequently or distinguish them into short-term and long-term projections. Adding more than four projection scenarios including additional types of "low-variant"fertility could show a variety of future changes. We also expect Statistics Korea topay more attention to the determination of a base population that should include both national and non-national populations. Finally we hope that Statistics Korea will find a wise way to incorporate the ideas underlying the system of stochastic population projection as part of the official national population projection.

Selecting Climate Change Scenarios Reflecting Uncertainties (불확실성을 고려한 기후변화 시나리오의 선정)

  • Lee, Jae-Kyoung;Kim, Young-Oh
    • Atmosphere
    • /
    • v.22 no.2
    • /
    • pp.149-161
    • /
    • 2012
  • Going by the research results of the past, of all the uncertainties resulting from the research on climate change, the uncertainty caused by the climate change scenario has the highest degree of uncertainty. Therefore, depending upon what kind of climate change scenario one adopts, the projection of the water resources in the future will differ significantly. As a matter of principle, it is highly recommended to utilize all the GCM scenarios offered by the IPCC. However, this could be considered to be an impractical alternative if a decision has to be made at an action officer's level. Hence, as an alternative, it is deemed necessary to select several scenarios so as to express the possible number of cases to the maximum extent possible. The objective standards in selecting the climate change scenarios have not been properly established and the scenarios have been selected, either at random or subject to the researcher's discretion. In this research, a new scenario selection process, in which it is possible to have the effect of having utilized all the possible scenarios, with using only a few principal scenarios and maintaining some of the uncertainties, has been suggested. In this research, the use of cluster analysis and the selection of a representative scenario in each cluster have efficiently reduced the number of climate change scenarios. In the cluster analysis method, the K-means clustering method, which takes advantage of the statistical features of scenarios has been employed; in the selection of a representative scenario in each cluster, the selection method was analyzed and reviewed and the PDF method was used to select the best scenarios with the closest simulation accuracy and the principal scenarios that is suggested by this research. In the selection of the best scenarios, it has been shown that the GCM scenario which demonstrated high level of simulation accuracy in the past need not necessarily demonstrate the similarly high level of simulation accuracy in the future and various GCM scenarios were selected for the principal scenarios. Secondly, the "Maximum entropy" which can quantify the uncertainties of the climate change scenario has been used to both quantify and compare the uncertainties associated with all the scenarios, best scenarios and the principal scenarios. Comparison has shown that the principal scenarios do maintain and are able to better explain the uncertainties of all the scenarios than the best scenarios. Therefore, through the scenario selection process, it has been proven that the principal scenarios have the effect of having utilized all the scenarios and retaining the uncertainties associated with the climate change to the maximum extent possible, while reducing the number of scenarios at the same time. Lastly, the climate change scenario most suitable for the climate on the Korean peninsula has been suggested. Through the scenario selection process, of all the scenarios found in the 4th IPCC report, principal climate change scenarios, which are suitable for the Korean peninsula and maintain most of the uncertainties, have been suggested. Therefore, it is assessed that the use of the scenario most suitable for the future projection of water resources on the Korean peninsula will be able to provide the projection of the water resources management that maintains more than 70~80% level of uncertainties of all the scenarios.

Alternating-Projection-Based Channel Estimation for Multicell Massive MIMO Systems

  • Chen, Yi Liang;Ran, Rong;Oh, Hayoung
    • Journal of information and communication convergence engineering
    • /
    • v.16 no.1
    • /
    • pp.17-22
    • /
    • 2018
  • In massive multiple-input multiple-output (MIMO) systems, linear channel estimation algorithms are widely applied owing to their simple structures. However, they may cause pilot contamination, which affects the subsequent data detection performance. Therefore, herein, for an uplink multicell massive multiuser MIMO system, we consider using an alternating projection (AP) for channel estimation to eliminate the effect of pilot contamination and improve the performance of data detection in terms of the bit error rates as well. Even though the AP is nonlinear, it iteratively searches the best solution in only one dimension, and the computational complexity is thus modest. We have analyzed the mean square error with respect to the signal-to-interference ratios for both the cooperative and non-cooperative multicell scenarios. From the simulation results, we observed that the channel estimation results via the AP benefit the following signal detection more than that via the least squares for both the cooperative and non-cooperative multicell scenarios.

Development of a Demand Model for Physician Workforce Projection on Regional Inequity Problem in Korea Using System Dynamics (시스템 다이내믹스를 활용한 지역별 국내 의사인력 수요에 대한 추계모델 개발)

  • Lee, Gyeong Min;Yoo, Ki-Bong
    • Health Policy and Management
    • /
    • v.32 no.1
    • /
    • pp.73-93
    • /
    • 2022
  • Background: Appropriate physician workforce projection through reasonable discussions and decisions with a broad view on supply and demand of the workforce, thus, is very important for high-quality healthcare services. The study expects to provide preliminary research data on the workforce diagnosis standard model for Korean physician workforce policy decision through more flexible and objective physician workforce projection in reflection of diverse changes in healthcare policy and sociodemographic environments. Methods: A low flow rate through the causal map was developed, and an objective workforce demand projection from 2019 to 2040 was conducted. In addition, projections by scenarios under various situations were conducted with the low flow rate developed in the study. Lastly, the demand projection of the physician workforce by region of 17 cities and provinces was conducted. Results: First, demand of physicians in 2019 was 110,665, 113,450 in 2020, 129,496 in 2025, 146,837 in 2030, 163,719 in 2035, and 179,288 in 2040. Second, the scenario for the retirement of baby boomers led to a decrease in the growth rate due to time delay. Third, Seoul and Gyeonggi-do account for a high percentage of demand, a very high upward trend was identified in Gyeonggi-do, and as a result, the projection showed that the demand of the physician workforce in Gyeonggi-do would worsen over time. Conclusion: This study is meaningful in that rational and collective physician workforce supply and demand and its imbalance in workforce distribution were verified through various projections by scenarios and regions of Korea with System Dynamics.

Analysis of drought characteristics depending on RCP scenarios at Korea (RCP 시나리오별 한반도 가뭄특성 분석)

  • Kim, Jungho;Kim, Sangdan;Joo, Jingul
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.4
    • /
    • pp.293-303
    • /
    • 2016
  • This study implemented a comparison of SPI characteristics in terms of quantitative and spatial analysis depending on four RCP scenarios. For this purpose, we compared quantitative characteristics of drought using standard precipitation index resulted from daily precipitation data reflecting future green gas concentration scenarios, and spatial distribution field of seasonal drought occurrence frequency and its duration, was analyzed to compare drought trends depending on the RCP scenarios. As a result, we found that SPI time series was quite different from each other and correlation coefficients were lower than 0.08. Depending on the RCP scenarios, spatial distribution results showed different trends in drought severity, frequency, and duration. The biggest reason of the difference is daily precipitation data based on the different greenhouse gas concentrations, but we could not find the effect of the concentration extent on drought occurrence projection. In addition, according to the results from this study, drought analysis results using single RCP scenario may have considerable uncertainty.

An Uncertainty Assessment of AOGCM and Future Projection over East Asia (동아시아 지역의 AOGCM 불확실성 평가 및 미래기후전망)

  • Kim, Min-Ji;Shin, Jin-Ho;Lee, Hyo-Shin;Kwon, Won-Tae
    • Atmosphere
    • /
    • v.18 no.4
    • /
    • pp.507-524
    • /
    • 2008
  • In this paper, future climate changes over East Asia($20^{\circ}{\sim}50^{\circ}N$, $100^{\circ}{\sim}150^{\circ}E$) are projected by anthropogenic forcing of greenhouse gases and aerosols using coupled atmosphere-ocean general circulation model (AOGCM) simulations based on Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) B1, A1B and A2 scenarios. Before projection future climate, model performance is assessed by the $20^{th}$ Century (20C3M) experiment with bias, root Mean Square Error (RMSE), ratio of standard deviation, Taylor diagram analysis. The result of examination of the seasonal uncertainty of T2m and PCP shows that cold bias, lowered than that of observation, of T2m and wet bias, larger than that of observation, of PCP are found over East Asia. The largest wet bias is found in winter and the largest cold bias is found in summer. The RMSE of temperature in the annual mean increases and this trend happens in winter, too. That is, higher resolution model shows generally better performances in simulation T2m and PCP. Based on IPCC SRES scenarios, East Asia will experience warmer and wetter climate in the coming $21^{st}$ century. It is predict the T2m increase in East Asia is larger than global mean temperature. As the latitude goes high, the warming over the continents of East Asia showed much more increase than that over the ocean. An enhanced land-sea contrast is proposed as a possible mechanism of the intensified Asian summer monsoon. But, the inter-model variability in PCP changes is large.

Projection of Paddy Rice Consumptive Use in the Major Plains of the Korean Peninsula under the RCP Scenarios (대표농도경로 시나리오에 의한 한반도 주요 평야지역 논벼 소비수량 추정)

  • Chung, Sang-Ok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.5
    • /
    • pp.35-41
    • /
    • 2012
  • The paddy rice consumptive use in the six plains of the Korean peninsula was projected with changing climate under the representative concentration pathway (RCP) scenarios. High resolution climate data for the baseline (1961-1990) was obtained from the International water management institute (IWMI) and future high resolution climate projection was obtained from the Korea Meteorological Administration. Reference evapotranspiration (ET) was calculated by using Hargreaves equation. The results of this study showed that the average annual mean temperature would increase persistently in the future. Temperatures were projected to increase more in RCP8.5 than those in RCP4.5 scenario. The rice consumptive use during the growing period was projected to increase slightly in the 2020s and then more significantly in the 2050s and 2080s. It showed higher values for RCP8.5 than for RCP4.5. The rice consumptive use after transplanting in the study areas would increase by 2.2 %, 5.1 % and 7.2 % for RCP4.5 and 3.0 %, 7.6 %, and 13.3 % for RCP8.5, in the 2020s, 2050s, and 2080s, respectively, from the baseline value of 534 mm. The results demonstrated the effects of climate change on rice consumptive use quite well, and can be used in the future agricultural water planning in the Korean peninsula.

Uncertainty decomposition in water resources projection considering interaction effects (교호작용 효과를 고려한 수자원 전망의 불확실성 분해)

  • Ohn, Ilsang;Kim, Yongdai;Kim, Young-Oh
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.spc
    • /
    • pp.1067-1078
    • /
    • 2018
  • Water resources projection typically consists of several stages including emission scenarios, global circulation models (GCMs), downscaling techniques, and hydrological models, and each stage is a source of total uncertainty in water resources projection. Several studies proposed methods to quantify the relative contribution of each stage to total uncertainty, and we call such analysis uncertainty decomposition. Uncertainty decomposition enables us to investigate the stages yielding large uncertainties and to establish the uncertainty reduction plan that reflects them. Interactions between stages is one of the important issues to be considered in uncertainty decomposition. This study suggests a new uncertainty decomposition method considering interaction effect. The proposed method has an advantage of decomposing the total uncertainty to the uncertainty from each stage considering both the main and interactions effects. We apply the proposed method to streamflow projection for Chungju Dam basin. The results show that the uncertainties from the main effects are larger than the uncertainties from interaction effects in both summer and winter. Using the proposed uncertainty decomposition method, we show that the GCM stage is the largest source of the total uncertainty in summer and the downscaling technique stage is the one in winter among the following four stages: emission scenarios, GCMs, downscaling techniques, and hydrological models.

Urban Land Use Planning with a PSS-based Land Use Change Projection Model

  • Kweon, Ihl;Kim, Jung-Wook
    • Spatial Information Research
    • /
    • v.10 no.4
    • /
    • pp.515-532
    • /
    • 2002
  • Planning Support System (PSS), an alternative framework of computer-aided planning system combining geographic information system (GIS), urban models, and visualization tools, has been actively researched and applied in many developed countries. This paper introduces a PSS-based land use change model, What if\ulcorner PSS, by applying it to Chongju City, Korea. This model application study used the spatial database, Restricted Development Zone (RDZ), and other hypothetical land supply- and demand-related policies of Chongju City. The collaborative PSS model supported land use planning process by helping users to speedily and easily create and test policy-oriented scenarios. The study found that the fully operational PSS model was readily applicable and useful to Korean local land use planning. The paper discusses the conceptual model framework, data requirement, application process, model output, and practical usage. This study would be considered as a prototypical approach of PSS-based land use plan making for Korean cities.

  • PDF

Projection on First Flowering Date of Cherry, Peach and Pear in 21st Century Simulated by WRFv3.4 Based on RCP 4.5 and 8.5 Scenarios (WRF를 이용한 RCP 4.5와 8.5 시나리오 하의 21세기 벚, 복숭아, 배 개화일 변화 전망)

  • Hur, Jina;Ahn, Joong-Bae;Shim, Kyo-Moon
    • Atmosphere
    • /
    • v.25 no.4
    • /
    • pp.693-706
    • /
    • 2015
  • A shift of first fowering date (FFD) of spring blossoms (cherry, peach and pear) over the northest Asia under global warming is investiaged using dynamically downscaled daily temperature data with 12.5 km resolution. For the study, we obatained gridded daily data with Historical (1981~2010), and Representative Concentration Pathway (RCP) (2021~2100) 4.5 and 8.5 scenarios which were produced by WRFv3.4 in conjunction with HadGEM2-AO. A change on FFDs in 21st century is estimated by applying daily outputs of WRFv3.4 to DTS phonological model. Prior to projection on future climate, the performances of both WRFv3.4 and DTS models are evaluated using spatial distribution of climatology and SCR diagram (Normalized standard deviation-Pattern correlation coefficient-Root mean square difference). According to the result, WRFv3.4 and DTS models well simulated a feature of the terrain following characteristics and a general pattern of observation with a marigin of $1.4^{\circ}C$ and 5~6 days. The analysis reveals a projected advance in FFDs of cherry, peach and pear over the northeast Asia by 2100 of 15.4 days (9.4 days). 16.9 days (10.4 days) and 15.2 days (9.5 days), respectively, compared to the Historical simulation due to a increasing early spring (Februrary to April) temperature of about $4.9^{\circ}C$ ($2.9^{\circ}C$) under the RCP 8.5 (RCP 4.5) scenarios. This indicates that the current flowering of the cherry, peach and pear over analysis area in middle or end of April is expected to start blooming in early or middle of April, at the end of this century. The present study shows the dynamically downscaled daily data with high-resolution is helpeful in offering various useful information to end-users as well as in understanding regional climate change.