• 제목/요약/키워드: Progressive hedging method

검색결과 2건 처리시간 0.015초

Optimal Offer Strategies for Energy Storage System Integrated Wind Power Producers in the Day-Ahead Energy and Regulation Markets

  • Son, Seungwoo;Han, Sini;Roh, Jae Hyung;Lee, Duehee
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권6호
    • /
    • pp.2236-2244
    • /
    • 2018
  • We make optimal consecutive offer curves for an energy storage system (ESS) integrated wind power producer (WPP) in the co-optimized day-ahead energy and regulation markets. We build the offer curves by solving multi-stage stochastic optimization (MSSO) problems based on the scenarios of pairs consisting of real-time price and wind power forecasts through the progressive hedging method (PHM). We also use the rolling horizon method (RHM) to build the consecutive offer curves for several hours in chronological order. We test the profitability of the offer curves by using the data sampled from the Iberian Peninsula. We show that the offer curves obtained by solving MSSO problems with the PHM and RHM have a higher profitability than offer curves obtained by solving deterministic problems.

Development of ESS Scheduling Algorithm to Maximize the Potential Profitability of PV Generation Supplier in South Korea

  • Kong, Junhyuk;Jufri, Fauzan Hanif;Kang, Byung O;Jung, Jaesung
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권6호
    • /
    • pp.2227-2235
    • /
    • 2018
  • Under the current policies and compensation rules in South Korea, Photovoltaic (PV) generation supplier can maximize the profit by combining PV generation with Energy Storage System (ESS). However, the existing operational strategy of ESS is not able to maximize the profit due to the limitation of ESS capacity. In this paper, new ESS scheduling algorithm is introduced by utilizing the System Marginal Price (SMP) and PV generation forecasting to maximize the profits of PV generation supplier. The proposed algorithm determines the charging time of ESS by ranking the charging schedule from low to high SMP when PV generation is more than enough to charge ESS. The discharging time of ESS is determined by ranking the discharging schedule from high to low SMP when ESS energy is not enough to maintain the discharging. To compensate forecasting error, the algorithm is updated every hour to apply the up-to-date information. The simulation is performed to verify the effectiveness of the proposed algorithm by using actual PV generation and ESS information.