• 제목/요약/키워드: Progressive coding

Search Result 73, Processing Time 0.021 seconds

Multi-resolution Lossless Image Compression for Progressive Transmission and Multiple Decoding Using an Enhanced Edge Adaptive Hierarchical Interpolation

  • Biadgie, Yenewondim;Kim, Min-sung;Sohn, Kyung-Ah
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.12
    • /
    • pp.6017-6037
    • /
    • 2017
  • In a multi-resolution image encoding system, the image is encoded into a single file as a layer of bit streams, and then it is transmitted layer by layer progressively to reduce the transmission time across a low bandwidth connection. This encoding scheme is also suitable for multiple decoders, each with different capabilities ranging from a handheld device to a PC. In our previous work, we proposed an edge adaptive hierarchical interpolation algorithm for multi-resolution image coding system. In this paper, we enhanced its compression efficiency by adding three major components. First, its prediction accuracy is improved using context adaptive error modeling as a feedback. Second, the conditional probability of prediction errors is sharpened by removing the sign redundancy among local prediction errors by applying sign flipping. Third, the conditional probability is sharpened further by reducing the number of distinct error symbols using error remapping function. Experimental results on benchmark data sets reveal that the enhanced algorithm achieves a better compression bit rate than our previous algorithm and other algorithms. It is shown that compression bit rate is much better for images that are rich in directional edges and textures. The enhanced algorithm also shows better rate-distortion performance and visual quality at the intermediate stages of progressive image transmission.

Joint Source/Channel Coding Based on Two-Dimensional Optimization for Scalable H.264/AVC Video

  • Li, Xiao-Feng;Zhou, Ning;Liu, Hong-Sheng
    • ETRI Journal
    • /
    • v.33 no.2
    • /
    • pp.155-162
    • /
    • 2011
  • The scalable extension of the H.264/AVC video coding standard (SVC) demonstrates superb adaptability in video communications. Joint source and channel coding (JSCC) has been shown to be very effective for such scalable video consisting of parts of different significance. In this paper, a new JSCC scheme for SVC transmission over packet loss channels is proposed which performs two-dimensional optimization on the quality layers of each frame in a rate-distortion (R-D) sense as well as on the temporal hierarchical structure of frames under dependency constraints. To compute the end-to-end R-D points of a frame, a novel reduced trellis algorithm is developed with a significant reduction of complexity from the existing Viterbi-based algorithm. The R-D points of frames are sorted under the hierarchical dependency constraints and optimal JSCC solution is obtained in terms of the best R-D performance. Experimental results show that our scheme outperforms the existing scheme of [13] with average quality gains of 0.26 dB and 0.22 dB for progressive and non-progressive modes respectively.

Progressive Image Coding using Wavelet Transform (웨이블릿 변환을 이용한 순차적 영상 부호화)

  • Kim, Yong-Yeon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.1
    • /
    • pp.33-40
    • /
    • 2014
  • In this paper we propose new image coding using wavelet transform. The new method constructs hierarchical bit plane and progressively transports each bit plane. The Proposed algorithm not only supports multi-resolution, dividing original image into special band and various resolution using Antonini's wavelet basis function but also reduces blocking effects that come into JPEG. In encoding time this algorithm considers each band characters and priority of transport order, and applies to fast search of image.

Edge Adaptive Hierarchical Interpolation for Lossless and Progressive Image Transmission

  • Biadgie, Yenewondim;Wee, Young-Chul;Choi, Jung-Ju
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.11
    • /
    • pp.2068-2086
    • /
    • 2011
  • Based on the quincunx sub-sampling grid, the New Interleaved Hierarchical INTerpolation (NIHINT) method is recognized as a superior pyramid data structure for the lossless and progressive coding of natural images. In this paper, we propose a new image interpolation algorithm, Edge Adaptive Hierarchical INTerpolation (EAHINT), for a further reduction in the entropy of interpolation errors. We compute the local variance of the causal context to model the strength of a local edge around a target pixel and then apply three statistical decision rules to classify the local edge into a strong edge, a weak edge, or a medium edge. According to these local edge types, we apply an interpolation method to the target pixel using a one-directional interpolator for a strong edge, a multi-directional adaptive weighting interpolator for a medium edge, or a non-directional static weighting linear interpolator for a weak edge. Experimental results show that the proposed algorithm achieves a better compression bit rate than the NIHINT method for lossless image coding. It is shown that the compression bit rate is much better for images that are rich in directional edges and textures. Our algorithm also shows better rate-distortion performance and visual quality for progressive image transmission.

An Efficient Polygonal Approximation Method in the Rate-Distorion Sense (비트량-왜곡을 고려한 효율적인 다각형 근사화 기법)

  • 윤병주;고윤호;김성대
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.1
    • /
    • pp.114-123
    • /
    • 2003
  • This paper proposes an efficient method for encoding the shape information of the object in the image. The polygonal approximation method is categorized into a loss coding method and is widely used for approximating object's shape information. The proposed method selects less number of vertices than IRM (iterated refinement method) or PVS (progressive vertex selection) when the maximum distortion is given, so reduces the bit-rates. The proposed method selects the vertices of a polygon with a simple and efficient method considering the rate-distortion sense. We construct the shape information coder, which shows the outstanding performance in the rate-distortion sense, based on the conventional progressive vertex selection method and the new vertex selection condition that we propose in this paper. Simulation results show that the proposed method has better performance than other conventional vertex selection methods in the tate-distortion sense.

A zeroblock coding algorithm for subband image compression

  • Park, Sahng-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.11
    • /
    • pp.2375-2380
    • /
    • 1997
  • The need for developing effective coding techniques for various multimedia services is increasing in order to meet the demand for image data. In this paper, a zeroblock coding algorithm is proposed for progressive transmission of images. The zeroblock coding algorithm is constructed as an embedded coding so that the encoding and decoding process can be terminated at any point and allowing reasonable image quality. Some features of zeroblock coding algorithm are 1) coding of subband images by prediction of the insignificance of blocks across subband leels, 2) aset of sate transition rules for representing the significance map of blocks, and 3) block coding by vector quantization using a multiband codebook consisting of several subcodebooks dedicated for each subband at a given threshold.

  • PDF

Progressive Image Transmission using LOT/CVQ with HVS Weighting (HVS가중치를 갖는 LOT/CVQ를 이용한 점진적 영상 전송)

  • 황찬식
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.5
    • /
    • pp.685-694
    • /
    • 1993
  • A progressive image transmission (PIT) scheme based on the classified transform vector quantization (CVQ) technique using the lapped orthogonal transform (LOT) and human visual system (HVS) weighting is proposed in this paper. Conventional block transform coding of images using DCT produces in general undesirable block-artifacts at low bit rates. In this paper, image blocks are transformed using the LOT and classified into four classes based on their structural properties and further divided adaptively into subvectors depending on the LOT coefficient statistics with HVS weighting to improve the reconstructed image quality by adaptive bit allocation. The subvectors are vector quantized and transmitted progressively. Coding tests using computer simulations show that the LOT/CVQ based PIT of images is a effective coding scheme. The results are also compared with those obtained using PIT/DCTVQ. The LOT/CVQ based PIT reduces the block-artifacts significantly.

  • PDF

Reversible Image Coding with Progressive Build-up (단계적 전송기능을 갖는 영상 데이터의 가역 부호화)

  • 박지환;김진홍;김두영
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.1
    • /
    • pp.111-119
    • /
    • 1994
  • In this paper we propose a reversible image coding methods with progressive build-up function by bit-plane of multi-lavel image. Firstly, the differencial conversion is applied to reduce the entropy of source images. Then the bit-plane sequences of converted images are coded by means of the newly designed VFRL(Variable to Fixed Run-Llength) code and the RDHC(Run-length Dynamic Huffman Coding). We aim to the simple construction to reduce the complexity. The computer simulated results show that the proposed methods are very effective to the multi-level digital images. For "GIRL" and "COUPLE" of 1EEE monochromatic standard images, the compressibility are superior to the results obtained by the well-known universal codes.own universal codes.

  • PDF

Bit-rate Scalable Video Coder Using a $2{\times}2{\times}2$ DCT for Progressive Transmission

  • Woo, Seock-Hoon;Park, Jin-Hyung;Won, Chee-Sun
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.66-69
    • /
    • 2000
  • In this paper, we propose a progressive transmission of a video using a 2$\times$2$\times$2 DCT First of all, the video data is transformed into multiresolution represented video data using a 2$\times$2$\times$2 DCT. Then. it is represented by a 3-D EZT(Embedded Zero Tree) coding fur the progressive transmission with a bit-rate scalability. The proposed progressive transmission algorithm needs much less computations and buffer memories than the higher-order convolution based wavelet filter. Also, since the 2$\times$2$\times$2 DCT requires independent local computations, parallel processing can be applied.

  • PDF