• Title/Summary/Keyword: Programming Language for Non-majors

Search Result 19, Processing Time 0.024 seconds

A Study on the Determination of Programming Language for Software Basic Education of Non-majors (비전공자 소프트웨어 기초교육을 위한 프로그래밍 언어 결정에 관한 연구)

  • Park, So Hyun
    • The Journal of Information Systems
    • /
    • v.28 no.4
    • /
    • pp.403-424
    • /
    • 2019
  • Purpose The objective of this study is to determine the programming language for improving algorithmic thinking of basic software education for non-majors, which has recently been receiving attention to nurture talents needed in the era of the Fourth Industrial Revolution. Design/methodology/approach In this study, Delphi method was used to select the suitable programming language for the features of each of five departments for basic software education for non-majors in order to develop the capability of algorithmic thinking. The survey was conducted three times to 21 experts, and the results were analyzed using quantitative analysis (CVR) values and stability. Findings For the most suitable programming language for each department determined in this study, App Inventor was selected for humanities department, RUR-PLE for natural science department, App Inventor for social science department, Python for engineering department, and Scratch for fine arts department. This is expected to be used as the basis for determining the direction of curriculum and operation of universities starting basic software education through programming language by department proposed in this study.

A Comparative Study of Educational Programming Languages for Non-majors Students: from the Viewpoint of Programming Language Design Principles (비전공자를 위한 교육용 프로그래밍 언어의 비교 연구: 프로그래밍 언어 설계 원칙의 관점으로)

  • Kim, Youngmin;Lee, Minjeong
    • The Journal of Korean Association of Computer Education
    • /
    • v.22 no.1
    • /
    • pp.47-61
    • /
    • 2019
  • As the SW-centered society has emerged, SW-based problem-solving capabilities is emphasized in all areas of society. It is a trend that universities are obliged to do SW basic education for non-majors students and they are carrying out programming education. This study derives grammatical elements based on conciseness, generality, and efficiency among the design principles of programming language and based on it, compares and analyzes visual programming language and diagramming language. As a result, the efficiency of Raptor is more powerful than Scratch in the simplicity and generality, and the same tendency can be confirmed in the result of the learner's obtained in programming lesson. We hope that this study will contribute to the design and implementation of programming education based on features of programming language.

Difficulty Analysis of an Introductory Computer Programming Course for non-Major Students (비전공자 대상의 컴퓨터 프로그래밍 입문 교양 수업에서의 학습자의 어려움 분석)

  • Kim, Jaekyung;Sohn, Eisung
    • Journal of Creative Information Culture
    • /
    • v.7 no.2
    • /
    • pp.69-77
    • /
    • 2021
  • In the past, computer programming was a course taken by students of computing domain majors. With the advent of the fourth industrial revolution, students in all major fields are taking it as the general required course. However, students have difficulties in learning new subject such as unfamiliar computational problem solving approach and general purposed programming language, which can lead to negative phenomena such as learning effectiveness, confidence, and decreased interest. In this paper, the causes of difficulties experienced by non-majors students while learning programming language are analyzed and identified through qualitative and quantitative research on questionnaires, journals, and achievements. Thus, we suggest that designing an educational plan that minimizes difficulties.

Python Basic Programming Curriculum for Non-majors and Development Analysis of Evaluation Problems (비전공자를 위한 파이썬 기초 프로그래밍 커리큘럼과 평가문제 개발분석)

  • Hur, Kyeong
    • Journal of Practical Engineering Education
    • /
    • v.14 no.1
    • /
    • pp.75-83
    • /
    • 2022
  • Most of the courses that teach the Python programming language are liberal arts courses that all students in general universities must complete. Through this, non-major students who have learned the basic programming process based on computational thinking are strengthening their convergence capabilities to apply SW in various major fields. In the previous research results, various evaluation methods for understanding the concept of computational thinking and writing code were suggested. However, there are no examples of evaluation problems, so it is difficult to apply them in actual course operation. Accordingly, in this paper, a Python basic programming curriculum that can be applied as a liberal arts subject for non-majors is proposed according to the ADDIE model. In addition, the case of evaluation problems for each Python element according to the proposed detailed curriculum was divided into 1st and 2nd phases and suggested. Finally, the validity of the proposed evaluation problem was analyzed based on the evaluation scores of non-major students calculated in the course to which this evaluation problem case was applied. It was confirmed that the proposed evaluation problem case was applied as a real-time online non-face-to-face evaluation method to effectively evaluate the programming competency of non-major students.

Designing an Intelligent Data Coding Curriculum for Non-Software Majors: Centered on the EZMKER Kit as an Educational Resource (SW 비전공자 대상으로 지능형 데이터 코딩 교육과정 설계 : EZMKER kit교구 중심으로)

  • Seoung-Young Jang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.5
    • /
    • pp.901-910
    • /
    • 2023
  • In universities, programming language-based thinking and software education for non-majors are being implemented to cultivate creative and convergent talent capable of leading the digital convergence era in line with the Fourth Industrial Revolution. However, learners face difficulties in acquiring the unfamiliar syntax and programming languages. The purpose of this study is to propose a software education model to alleviate the challenges faced by non-major students during the learning process. By introducing algorithm techniques and diagram techniques based on programming language thinking and using the EZMKER kit as an instructional model, this study aims to overcome the lack of learning about programming languages and syntax. Consequently, a structured software education model has been designed and implemented as a top-down system learning model.

A Study on Teacher-learner Feedback Method for Effective Software Project Execution of Non-Computer Major Students (컴퓨터 비전공자의 효과적인 소프트웨어 프로젝트 수행을 위한 교수자-학습자 피드백 방법에 관한 연구)

  • Jung, Hye-Wuk
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.1
    • /
    • pp.211-217
    • /
    • 2019
  • The term project executed at the university is a learner-centered learning method in which students select their topics, draw up their plans, and produce results by themselves based on the content they have learned during the semester. Through the term-end project of the subjects relating software, students learn various techniques for the programming language and produce the outcomes of their project by the creative program development process. However, non-computer majors who take software course as liberal arts subjects have difficulty in understanding the programming language, so it is necessary to provide feedback from their professor for encouraging students in carrying out their projects smoothly. Therefore, a feedback method by the discussions between a professor and learners that can be applied to the term-end project of programming subject for the non-computer majors is proposed. The proposed method was apply to the actual term-end projects and the meaningful results were confirmed through the analysis of the project processes and outcomes.

Development of Python Education Program with Computational Thinking

  • Lee, Min-Kyung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.11
    • /
    • pp.315-323
    • /
    • 2022
  • In this paper, we propose a python education program that applies computational thinking for non-majors and programming beginners. In this study, we focus on the basics of program logic, breaking away from the difficult grammar and memorization-oriented programming education. And by applying the problem-solving procedure of computational thinking, we propose an educational program that allows non-majors and programming beginners to learn programming easily. In this paper, an 8-week educational program was applied to middle school students with little text coding experience. and through a post-satisfaction survey, it was found that their confidence in programming increased, and they were able to apply computational thinking could be applied to life and other subjects. Although the importance of programming education is being emphasized, it is expected that it will be used as a useful educational program when composing program education for non-majors and beginners in programming for learners who still find it difficult to learn programming.

Analysis of the moderating effects of programming languages and the relationship between learners' learning characteristics and achievements (프로그래밍 언어의 조절효과 및 학습자의 학습특성과 성취도와의 관계 분석)

  • Lee, Kyung-Sook
    • Journal of Digital Convergence
    • /
    • v.19 no.4
    • /
    • pp.49-55
    • /
    • 2021
  • This study analyzed the relationship between the characteristics of learners and the achievement level according to the language they learn in programming education for non-major students. The learner's characteristics were set as mastery goal, situaltional interest, cognitive engagement, and self-efficacy for performance, and path analysis was conducted to understand the relationship between the language used and the learning achievement. Situaltional interest and cognitive engagement were found to have an effect on self-efficacy for performace, and self-efficacy for performance had an effect on academic achievement. At this time, the type of programming language to be studied showed a moderating effect on learning achievement. Based on the results of this study, it is suggested that appropriate instruction is needed for each language used in programming lessons for software non-majors.

Curriculum of Basic Data Science Practices for Non-majors (비전공자 대상 기초 데이터과학 실습 커리큘럼)

  • Hur, Kyeong
    • Journal of Practical Engineering Education
    • /
    • v.12 no.2
    • /
    • pp.265-273
    • /
    • 2020
  • In this paper, to design a basic data science practice curriculum as a liberal arts subject for non-majors, we proposed an educational method using an Excel(spreadsheet) data analysis tool. Tools for data collection, data processing, and data analysis include Excel, R, Python, and Structured Query Language (SQL). When it comes to practicing data science, R, Python and SQL need to understand programming languages and data structures together. On the other hand, the Excel tool is a data analysis tool familiar to the general public, and it does not have the burden of learning a programming language. And if you practice basic data science practice with Excel, you have the advantage of being able to concentrate on acquiring data science content. In this paper, a basic data science practice curriculum for one semester and weekly Excel practice contents were proposed. And, to demonstrate the substance of the educational content, examples of Linear Regression Analysis were presented using Excel data analysis tools.

Contents Analysis of Basic Software Education of Non-majors Students for Problem Solving Ability Improvement - Focus on SW-oriented University in Korea - (문제해결력 향상을 위한 비전공자 소프트웨어 기초교육 내용 분석 - 국내 SW중심대학 중심으로 -)

  • Jang, Eunsill;Kim, Jaehyoun
    • Journal of Internet Computing and Services
    • /
    • v.20 no.4
    • /
    • pp.81-90
    • /
    • 2019
  • Since 2015, the government has been striving to strengthen the software capabilities required for future talent through software-oriented university in Korea. In the university selected as a software-oriented university, basic software education is given to all departments such as humanities, social science, engineering, natural science, arts and the sports within the university in order to foster convergent human resources with different knowledge and software literacy. In this paper, we analyze the contents of basic software education for twenty universities selected as software-oriented universities. As a result of analysis, most of the basic software education which is carried out to the students of the non-majors students was aimed at improvement of problem solving ability centered on computational thinking for future society and improvement of convergence ability based on computer science. It uses block-based educational programming language and text-based advanced programming language to adjust the difficulty of programming contents and contents reflecting characteristics of each major. Problem-based learning, project-based learning, and discussion method were used as the teaching and learning methods for problem solving. In the future, this paper will help to establish the systematic direction for basic software education of non-majors students.