• Title/Summary/Keyword: Profile Tolerancing

Search Result 2, Processing Time 0.017 seconds

A Profile Tolerance Usage in GD&T for Precision Manufacturing (정밀제조를 위한 기하공차에서의 윤곽공차 사용)

  • Kim, Kyung-Wook;Chang, Sung-Ho
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.2
    • /
    • pp.145-149
    • /
    • 2017
  • One of the challenges facing precision manufacturers is the increasing feature complexity of tight tolerance parts. All engineering drawings must account for the size, form, orientation, and location of all features to ensure manufacturability, measurability, and design intent. Geometric controls per ASME Y14.5 are typically applied to specify dimensional tolerances on engineering drawings and define size, form, orientation, and location of features. Many engineering drawings lack the necessary geometric dimensioning and tolerancing to allow for timely and accurate inspection and verification. Plus-minus tolerancing is typically ambiguous and requires extra time by engineering, programming, machining, and inspection functions to debate and agree on a single conclusion. Complex geometry can result in long inspection and verification times and put even the most sophisticated measurement equipment and processes to the test. In addition, design, manufacturing and quality engineers are often frustrated by communication errors over these features. However, an approach called profile tolerancing offers optimal definition of design intent by explicitly defining uniform boundaries around the physical geometry. It is an efficient and effective method for measurement and quality control. There are several advantages for product designers who use position and profile tolerancing instead of linear dimensioning. When design intent is conveyed unambiguously, manufacturers don't have to field multiple question from suppliers as they design and build a process for manufacturing and inspection. Profile tolerancing, when it is applied correctly, provides manufacturing and inspection functions with unambiguously defined tolerancing. Those data are manufacturable and measurable. Customers can see cost and lead time reductions with parts that consistently meet the design intent. Components can function properly-eliminating costly rework, redesign, and missed market opportunities. However a supplier that is poised to embrace profile tolerancing will no doubt run into resistance from those who would prefer the way things have always been done. It is not just internal naysayers, but also suppliers that might fight the change. In addition, the investment for suppliers can be steep in terms of training, equipment, and software.

A Comparison Study between Composite and Multiple Single-Segment Profile Control (Profile의 Composite와 Multiple Single-Segment Control의 비교 연구)

  • Kim, Jun-Ho;Chang, Sung-Ho;Ra, Doo-Wan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.4
    • /
    • pp.1-6
    • /
    • 2016
  • As manufacturing industries become globalized, product design affects every area of organization. The design sets the goals for a number of different departments, so if it fails to effectively communicate these goals, the entire organization is less efficient. In addition, To communicate clearly, the design must represent a product that meets its technical specification. GD&T (Geometric Dimensioning and Tolerancing) is one of the most important factors, which has an effect on efficiency of manufacture system, in designing products. However, most of designers in different industries are prone to ignore the importance of GD&T. To analyse the importance of GD&T compliance with international standards for design drawing, a comparison analysis of the difference between two methods, composite profile control and multiple single segment profile control, is performed on three different cases and suggests how it used to be more suitable. Composite profile tolerance is specified by a dual feature control frame that has one profile symbol specified with two lines of tolerance information. Whereas a multiple single segment profile control is when two or more single segment profile callouts are used to define the location and/or orientation and/or size and/or form of a part feature. In this study, the following results will be provided : a clear definition and an obvious difference of the tolerance zone, datums and datums sequence and minimization of tolerances. On this study, composite profile tolerance and multiple single segment profile tolerance were discussed. Next steps of research will consist on reaching more accurate results for profile control. Further research will be focused on dealing with the remaining 14 symbols of GD&T.