• Title/Summary/Keyword: Profanity Sentence

Search Result 3, Processing Time 0.015 seconds

Profane or Not: Improving Korean Profane Detection using Deep Learning

  • Woo, Jiyoung;Park, Sung Hee;Kim, Huy Kang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.1
    • /
    • pp.305-318
    • /
    • 2022
  • Abusive behaviors have become a common issue in many online social media platforms. Profanity is common form of abusive behavior in online. Social media platforms operate the filtering system using popular profanity words lists, but this method has drawbacks that it can be bypassed using an altered form and it can detect normal sentences as profanity. Especially in Korean language, the syllable is composed of graphemes and words are composed of multiple syllables, it can be decomposed into graphemes without impairing the transmission of meaning, and the form of a profane word can be seen as a different meaning in a sentence. This work focuses on the problem of filtering system mis-detecting normal phrases with profane phrases. For that, we proposed the deep learning-based framework including grapheme and syllable separation-based word embedding and appropriate CNN structure. The proposed model was evaluated on the chatting contents from the one of the famous online games in South Korea and generated 90.4% accuracy.

A Study on Automatic Classification of Profanity Sentences of Elementary School Students Using BERT (BERT를 활용한 초등학교 고학년의 욕설문장 자동 분류방안 연구)

  • Shim, Jaekwoun
    • Journal of Creative Information Culture
    • /
    • v.7 no.2
    • /
    • pp.91-98
    • /
    • 2021
  • As the amount of time that elementary school students spend online increased due to Corona 19, the amount of posts, comments, and chats they write increased, and problems such as offending others' feelings or using swear words are occurring. Netiquette is being educated in elementary school, but training time is insufficient. In addition, it is difficult to expect changes in student behavior. So, technical support through natural language processing is needed. In this study, an experiment was conducted to automatically filter profanity sentences by applying them to a pre-trained language model on sentences written by elementary school students. In the experiment, chat details of elementary school 4-6 graders were collected on an online learning platform, and general sentences and profanity sentences were trained through a pre-learned language model. As a result of the experiment, as a result of classifying profanity sentences, it was analyzed that the precision was 75%. It has been shown that if the learning data is sufficiently supplemented, it can be sufficiently applied to the online platform used by elementary school students.

Target and Swear Word Detection Using Sentence Analysis in Real-Time Chatting (실시간 채팅 환경에서 문장 분석을 이용한 대상자 및 비속어 검출)

  • Yeom, Choongseok;Jang, Junyoung;Jang, Yuhwan;Kim, Hyun-chul;Park, Heemin
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.1
    • /
    • pp.83-87
    • /
    • 2021
  • By the increase of internet usage, communicating online became an everyday thing. Thereby various people have experienced profanity by anonymous users. Nowadays lots of studies tried to solve this problem using artificial intelligence, but most of the solutions were for non-real time situations. In this paper, we propose a Telegram plugin that detects swear words using word2vec, and an algorithm to find the target of the sentence. We vectorized the input sentence to find connections with other similar words, then inputted the value to the pre-trained CNN (Convolutional Neural Network) model to detect any swears. For target recognition we proposed a sequential algorithm based on KoNLPY.