• Title/Summary/Keyword: Proeutectoid ferrite

Search Result 5, Processing Time 0.021 seconds

Effect of Heterogeneous Microstructure on the Fracture Toughness of Weld Metal (용착금속의 파괴인성에 미치는 불균일 미세조직의 영향)

  • 정현호;김철만;김형식;김우식;홍성호
    • Journal of Welding and Joining
    • /
    • v.17 no.2
    • /
    • pp.36-43
    • /
    • 1999
  • The effect of microstructure on the fracture toughness of multi pass weld metal has been investigated. The micromechanisms of fracture process are identified by in-situ scanning electron microscopy(SEM) fracture observation using single edge notched specimen. The notches of the in-situ fracture specimens were carefully located such that the ends of the notches were in the as-deposited top bead and the reheated weld metal respectively. The observation of in-situ fracture process for as-deposited top bead indicated that as strains are applied, microcracks are formed at the interfaces between soft proeutectoid ferrite and acicular ferrite under relatively low stress intensity factor. Then, the microcracks propagate easily along the proeutectoid ferrite phase, leading to final fracture. These findings suggest that proeutectoid ferrite plays an important role in reducing the toughness of the weld metal. On the other hand, reheated regions showed that the microcrack initiated at the notch tip grows along the localized shear bands under relatively high stress intensity factor, confirming that reheated area showing momogeneous and fine microstructure would be beneficial to the fracture resistance of weld metal.

  • PDF

Crystal Dependence in Micro Scratching of Carbon Steel - Groove Formation of Cementite and Ferrite Phases -

  • Taniyama, H.;Eda, H.;Sato, J.;Shimizu, J.;Zhou, L.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.197-198
    • /
    • 2002
  • In order to produce micromachined parts with a great dimensional accuracy, it is important to clarify the influence of heterogeneity and/or discontinuity of workpiece materials on the micromachining process, because almost all structural materials are composed of heterogeneous and/or homogeneous crystal grains at the micro scale. Experiments where JIS S25C steel had been scratched with a diamond triangular pyramid indenter were conducted under a field emission scanning electron microscope (FE-SEM). The difference of plastic deformation at a groove scratched between a pearlite zone and a proeutectoid ferrite zone was investigated through comparison with the groove scratched of a pearlite zone and a proeutectoid ferrite zone.

  • PDF

A Study on the Stress Corrosion Cracking Evaluation for Weld Joint of TMCP steel by SP-SSRT Method (SP-SSRT법에 의한 TMCP강 용접부의 응력부식균열 평가에 관한 연구)

  • 유효선;정희돈;정세희
    • Journal of Welding and Joining
    • /
    • v.15 no.1
    • /
    • pp.46-54
    • /
    • 1997
  • The object of this paper is to evaluate SCC(stress corrosion cracking) susceptibility for parent metal and bond line region of weld joints which have the various weld heat input condtions in TMCP(thermo-mechanical control process) steel by SP-SSRT(small punch-slow strain rate test) method. And the SCC test results of TMCP steel are compared with those of the conventional HT50 steel which has te almost same tensile strength level like TMCP steel. The loading rate used was $3\times10^{-4}$mm/min and the corrosive environment was synthetic sea water. According to the test results, in the case of parent metal, TMCP steel showed higher SCC susceptibility than HT50 steel because of the high plastic strain level of ferrite microstructure obtained by accelerated cooling. And in the case of bond line, the both TMCP steel and HT50 steel showed low load-displacement behaviors and higher SCC susceptibility above 0.6. These results may be caused by theembrittled martensite structure on HT50 steel and by the coarsened grain and the proeutectoid ferrite structure obtained by the impart of accelerated cooling effect on TMCP steel.

  • PDF

Recrystallization Behavior in the Two-Phase (α+γ) Region of Micro-Alloyed Steels (페라이트-오스테나이트 2상역 온도에서 미량합금 원소가 첨가된 탄소강의 재결정 거동)

  • Lee, Seung-Yong;Kim, Ji-Yeon;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.26 no.11
    • /
    • pp.583-589
    • /
    • 2016
  • In this study, recrystallization behaviors in the two-phase (${\alpha}+{\gamma}$) region of micro-alloyed steels such as Base, Nb, TiNbV and CAlN were investigated in terms of flow stress, microstructure and associated grain boundary characteristics. The flow stress of all specimens reached peak stress and gradually decreased, which means that recrystallization or recovery of proeutectoid deformed ferrite and recovery or transformation to ferrite of deformed austenite occurred by thermal activation. The precipitation of carbide or nitride via the addition of micro-alloying elements, because it reduced prior austenite grain size upon austenitization, promoted transformation of austenite to ferrite and increased flow stress. The strain-induced precipitation under deformation in the two-phase region, on the other hand, increased the flow stress when the micro-alloying elements were dissolved during austenitization. The recrystallization of the Nb specimen was more effectively retarded than that of the TiNbV specimen during deformation in the two-phase region.

Influence of Nb Addition and Austenitizing Temperature on the Hardenability of Low-Carbon Boron Steels (저탄소 보론강의 경화능에 미치는 Nb 첨가와 오스테나이트화 온도의 영향)

  • Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.25 no.11
    • /
    • pp.577-582
    • /
    • 2015
  • The present study is concerned with the influence of niobium(Nb) addition and austenitizing temperature on the hardenability of low-carbon boron steels. The steel specimens were austenitized at different temperatures and cooled with different cooling rates using dilatometry; their microstructures and hardness were analyzed to estimate the hardenability. The addition of Nb hardly affected the transformation start and finish temperatures at lower austenitizing temperatures, whereas it significantly decreased the transformation finish temperature at higher austenitizing temperatures. This could be explained by the non-equilibrium segregation mechanism of boron atoms. When the Nb-added boron steel specimens were austenitized at higher temperatures, it is possible that Nb and carbon atoms present in the austenite phase retarded the diffusion of carbon towards the austenite grain boundaries during cooling due to the formation of NbC precipitate and Nb-C clusters, thus preventing the precipitation of $M_{23}(C,B)_6$ along the austenite grain boundaries and thereby improving the hardenability of the boron steels. As a result, because it considerably decreases the transformation finish temperature and prohibits the nucleation of proeutectoid ferrite even at the slow cooling rate of $3^{\circ}C/s$, irrespective of the austenitizing temperature, the addition of 0.05 wt.% Nb had nearly the same hardenability-enhancing effect as did the addition of 0.2 wt.% Mo.