• Title/Summary/Keyword: Productivity of rice

Search Result 454, Processing Time 0.022 seconds

Effects of Salinity Content on Soil Chemical Composition and Productivity of Rice in Reclaimed Saline Paddy Field (간척지의 염분농도 차이가 토양의 화학적 조성과 벼의 생산성에 미치는 영향)

  • 권병선;백선영;신정식;임준택;신동영;김학진;현규환
    • Korean Journal of Plant Resources
    • /
    • v.16 no.3
    • /
    • pp.181-186
    • /
    • 2003
  • In order to evaluate the effect of salinity content in soil on chemical composition and productivity of rice which is suitable for the reclaimed saline paddy field, yield components and yield were investigated in 2,000 at reclaimed paddy field of Kwangyang bay in Korea. Heading date was early with Aug. 15 in soft salinification of 0.1 percent and late with from Aug. 20 to Aug. 25 in heavy salinification of 0.4 and 0.8 percent. Brown rice yield was highest in soft saliniflcation of 0.1 percent with 599kg/10a and was decreased with from 568kg/10a to 446kg/10a in heavy salinification of 0.4 and 0.8 percent. The correlation coefficient between brown rice yield and content of soil chemical composition, on organic matter, phosphate, nitrogen, potassium, calcium, and magnesium showed highly positive correlation and was shown negative correlation with pH meter. Judging from the results reported above, optimum salinification of saline paddy field seemed to be 0.1 percent.

Genome Shuffling of Mangrove Endophytic Aspergillus luchuensis MERV10 for Improving the Cholesterol-Lowering Agent Lovastatin under Solid State Fermentation

  • El-Gendy, Mervat Morsy Abbas Ahmed;Al-Zahrani, Hind A.A.;El-Bondkly, Ahmed Mohamed Ahmed
    • Mycobiology
    • /
    • v.44 no.3
    • /
    • pp.171-179
    • /
    • 2016
  • In the screening of marine mangrove derived fungi for lovastatin productivity, endophytic Aspergillus luchuensis MERV10 exhibited the highest lovastatin productivity (9.5 mg/gds) in solid state fermentation (SSF) using rice bran. Aspergillus luchuensis MERV10 was used as the parental strain in which to induce genetic variabilities after application of different mixtures as well as doses of mutagens followed by three successive rounds of genome shuffling. Four potent mutants, UN6, UN28, NE11, and NE23, with lovastatin productivity equal to 2.0-, 2.11-, 1.95-, and 2.11-fold higher than the parental strain, respectively, were applied for three rounds of genome shuffling as the initial mutants. Four hereditarily stable recombinants (F3/3, F3/7, F3/9, and F3/13) were obtained with lovastatin productivity equal to 50.8, 57.0, 49.7, and 51.0 mg/gds, respectively. Recombinant strain F3/7 yielded 57.0 mg/gds of lovastatin, which is 6-fold and 2.85-fold higher, respectively, than the initial parental strain and the highest mutants UN28 and NE23. It was therefore selected for the optimization of lovastatin production through improvement of SSF parameters. Lovastatin productivity was increased 32-fold through strain improvement methods, including mutations and three successive rounds of genome shuffling followed by optimizing SSF factors.

Challenges of Korean organic rice farming - practices, economic performances and implications from the case study of Jeonnam province

  • Seo, Gwi-Soo;Lee, Jin-Woo;Nicholas, Phillipa;Cho, Youn-Sup
    • Proceedings of the Korean Society of Organic Agriculture Conference
    • /
    • 2009.12a
    • /
    • pp.284-284
    • /
    • 2009
  • EFA production systems have through necessity resulted in the development of innovative practices for weed, pest and diseases control, for example, using ducks and snails for weed control in paddy fields. These practices began to be introduced in the early 1990's and the techniques have become more popular and have been adapted to suit regional conditions. In this study, the production practices, productivity and economic performances of organic and non-chemical rice farming adopting ducks and snails for weed control were compared. In the production practices, Korean organic and non-chemical farming seem to have several concerns in terms of sustainability. It comprises lack of resistant variety use and rotational cropping system as well as high dependency upon external inputs such as organic fertilizer and farming materials for pest control. The production level of organic farming is approximately similar level but 20% higher income than non-chemical farming, while, when it was compared with conventional farming organic farming showed 20% lower productivity but 20% higher income. Organic farming shows 15% to 18% higher profits than non-chemical farming as the snail-using organic farming tends to have higher income and lower input costs than duck-using organic farming. This may encourage more farmers to convert to organic production using these techniques than simply non-chemical farming in the future. This organic conversion could be more promoted by policy intervention. However, it may result in increased supply and therefore decreased prices for organic rice in the long term unless further market demand occurs. Balanced policy measures considering production as well as marketing and consumption are urgently required for the sustainable development of organic farming.

  • PDF

Predicting Potential Epidemics of Rice Leaf Blast Disease Using Climate Scenarios from the Best Global Climate Model Selected for Individual Agro-Climatic Zones in Korea (국내 농업기후지대 별 최적기후모형 선정을 통한 미래 벼 도열병 발생 위험도 예측)

  • Lee, Seongkyu;Kim, Kwang-Hyung
    • Journal of Climate Change Research
    • /
    • v.9 no.2
    • /
    • pp.133-142
    • /
    • 2018
  • Climate change will affect not only the crop productivity but also the pattern of rice disease epidemics in Korea. Impact assessments for the climate change are conducted using various climate change scenarios from many global climate models (GCM), such as a scenario from a best GCM or scenarios from multiple GCMs, or a combination of both. Here, we evaluated the feasibility of using a climate change scenario from the best GCM for the impact assessment on the potential epidemics of a rice leaf blast disease in Korea, in comparison to a multi?model ensemble (MME) scenario from multiple GCMs. For this, this study involves analyses of disease simulation using an epidemiological model, EPIRICE?LB, which was validated for Korean rice paddy fields. We then assessed likely changes in disease epidemics using the best GCM selected for individual agro?climatic zones and MME scenarios constructed by running 11 GCMs. As a result, the simulated incidence of leaf blast epidemics gradually decreased over the future periods both from the best GCM and MME. The results from this study emphasized that the best GCM selection approach resulted in comparable performance to the MME approach for the climate change impact assessment on rice leaf blast epidemic in Korea.

Overexpression of the Escherichia coli catalase gene, katE, enhances tolerance to salinity stress in the transgenic indica rice cultivar, BR5

  • Moriwaki, Teppei;Yamamoto, Yujirou;Aida, Takehiko;Funahashi, Tatsuya;Shishido, Toshiyuki;Asada, Masataka;Prodhan, Shamusul Haque;Komamine, Atsushi;Motohashi, Tsuyoshi
    • Plant Biotechnology Reports
    • /
    • v.2 no.1
    • /
    • pp.41-46
    • /
    • 2008
  • Salinity stress is a major limiting factor in cereal productivity. Many studies report improvements in salt tolerance using model plants, such as Arabidopsis thaliana or standard varieties of rice, e.g., the japonica rice cultivar Nipponbare. However, there are few reports on the enhancement of salt tolerance in local rice cultivars. In this work, we used the indica rice (Oryza sativa) cultivar BR5, which is a local cultivar in Bangladesh. To improve salt tolerance in BR5, we introduced the Escherichia coli catalase gene, katE. We integrated the katE gene into BR5 plants using an Agrobacterium tumefaciens-mediated method. The introduced katE gene was actively expressed in the transgenic BR5 rice plants, and catalase activity in $T_1$ and $T_2$ transgenic rice was approximately 150% higher than in nontransgenic plants. Under NaCl stress conditions, the transgenic rice plants exhibited high tolerance compared with nontransgenic rice plants. $T_2$ transgenic plants survived in a 200 mM NaCl solution for 2 weeks, whereas nontransgenic plants were scorched after 4 days soaking in the same NaCl solution. Our results indicate that the katE gene can confer salt tolerance to BR5 rice plants. Enhancement of salt tolerance in a local rice cultivar, such as BR5, will provide a powerful and useful tool for overcoming food shortage problems.

The growth and productivity of native Indonesian rice progenies and its relationship with root development during dry-season

  • Zakaria, Sabaruddin;Fitrya, Farid;Kurniawan, Trisda;Hereri, Agam Ihsan;Maulana, Teuku
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.338-338
    • /
    • 2017
  • One of the problems in increasing rice production is getting lines or varieties that have high adaptability so that able to produce maximum production in a variety of environmental conditions. One strategy that can be done to get adaptive varieties is through the improvement of native varieties. This research was conducted in rain fed paddy field, Aceh province, Indonesia from June to September 2014. The texture of the soil was clay-loam with the soil pH ranged from 6.5-6.7. Five potential progenies of rice from crossing between native Indonesian rice with introduced rice varieties consist of C3, C4, S3, S5, S6 were used in this study. Besides that, one national rice variety Ciherang also used as a comparison. The plants were growth in the plot with the size of $2m{\times}1.4m$ with plant distance was $20cm{\times}20cm$. The fertilizers used in this study were Urea, NPK, and KCl. Randomized block design with 6 rice progenies/variety and 3 replications were used in this study. There were 18 experimental units and each experimental unit had 10 samples for the sources of data. The variables that were observed in this study including plant height at harvesting time, number of productive tiller, the percentage of empty grains and filled grain per panicle, weight of filled grains per hill, weight of filled grain per plot and yield potential per hectare. Analyzed were also conducted for the depth of root penetration, dry-root weight, dry-shoot weight, shoot-root weight ratio and its correlation with the weight of filled grain per hill. The research results show that there was significant difference on plant height at harvesting time, number of productive tillers, the percentage of empty grains and filled grain per panicle, weight of filled grains per hill, weight of filled grain per plot and yield potential per ha (p>0.01) among the treatments. In addition, depth root penetration, dry-root weight, dry-shoot weight, shoot-root weight ratio also had significant difference (p>0.01) among the treatment. The highest plant at harvesting time was found in S6, reaching 129.8 cm and the shortest plants was found in C3 reaching 107.5 cm. The largest number of productive tillers and the highest percentage of filled grains per panicle were found in Ciherang reaching 10.5 tillers and 80.7% respectively. Ciherang also had the heaviest weight of filled grains per hill and per plot reaching 21.1 g and 2.18 kg respectively. Whereas, S6 had the lowest number of tillers and the lowest percentage of filled grain per panicle.. The highest yield potential per ha was found in Ciherang reaching 7.79 tons. Among the progenies, S5 had the highest yield potential reaching 5 tons/Ha. The result also showed significant relationship between shoot-root weight ratio with weight of filled grains per hill. The highest value of shoot-root weight ratio (1.57) in Ciherang is thought had closed relationship with its yield potential.

  • PDF

Effects of Rice-Winter Cover Crops Cropping Systems on the Rice Yield and Quality in No-tillage Paddy Field

  • Lee, Young-Han;Son, Daniel;Choe, Zhin-Ryong
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.1
    • /
    • pp.53-58
    • /
    • 2009
  • The propose of this study was to find out optimum conditions for no-tillage rice-winter cover crops cropping system. A field research was conducted to evaluate productivity and quality of rice cultivars (Dongjinbyeo and Junambybyeo) in rice-winter cover cropping systems at Doo-ryangmyeon., Sacheon, Gyeongsangnam-do, Korea from January 2005 to October 2006. The experimental soil was Juggog series (fine silty, mesic family of Fluvaquentic Eutrndepts). The rice cultivars were experimented under some different high residue farming systems, i.e. no-tillage no treatment (NTNT), no-tillage amended with rice straw (NTRS), no-tillage amended with rye (NTR), no-tillage amended with Chinese milkvetch (NTCMV), tillage no treatment (TNT), and conventional cropping system (Control). The miss-planted rate was 8.8% in 2005 and range of 10.8% to 13.3% in 2006 at NTR, and the other treatments were carried out at miss-planted rate ranging from 1.2% to 5.0%. Tiller numbers of Junambyeo, and Dongjinbyeo in both of years were the highest in Control, and decreased nearly in NTCMV, NTR, NTRS, NTNT, and TNT in that order. The lowest grain yield was observed in TNT both cultivars due to the lower tiller numbers per area, and spikelet numbers per panicle. Also, no-tillage treatments were lower grain yield than control. On the other hand, 1,000-grain weight was lowest in control due to higher tiller numbers per area, and spikelet numbers per panicle. Ripened grain ratio was a similar aspect in all treatments. The palatability score of milled rice was lowest in control while protein content of milled rice was highest in control. The NTCMV was considered an effective sustainable farming practice for rice yield and quality.

Behavior of Nitrogen Released from Chinese Milk Vetch in Paddy Soil by Using Stable 15N Trace (논토양 중 자운영 환원에 의한 질소의 동태 구명)

  • Lee, Chang Hoon;Jung, Ki Youl;Kim, Sun Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1094-1099
    • /
    • 2012
  • Green manure cultivation affects soil productivity and nutrient conservation in paddy soil at winter season. This study was to evaluate nitrogen behavior released from chinese milk vetch (CMV) as green manure by using stable $^{15}N$ trace during rice cultivation. The CMV used in the experiment was 29.9 of C/N ratio and 14.1 g N $kg^{-1}$ ($^{15}N$ 0.388 atom % excess) and was applied at rates of 10 and $30Mg\;ha^{-1}$ in pot of 1/2000a size. Rice growth and N uptake increased with higher levels of CMV application at harvesting stage. Among total N uptake, 14.6 and 26.8 % of nitrogen was released respectively from the two different rates of CMV application. Stable $^{15}N$ recovery by rice biomass was 60%, 54% to the $^{15}N$ input, respectively, of CMV application, which decreased in order of grain, root, and straw of rice biomass. Total N content in the soil after rice harvest was 1.9 and 2.1 g N $kg^{-1}$, respectively, with increasing N input by the different rates of CMV application and the rate of $^{15}N$ recovery derived from CMV in the soil was 3.8 and 4.8 %, respectively. N input by CMV application induced rice growth and productivity during rice cultivation. However, it might need proper managements to reduce N loss because about 36-41 % of nitrogen was lost from N input by CMV application.

Reducing Nitrogen Fertilization Level of Rice (Oryza sativa L.) by Silicate Application in Korean Paddy Soil (논토양에서 규산질 비료 시용에 의한 질소 시비 저감수준 평가)

  • Lee, Chang-Hoon;Yang, Min-Suk;Chang, Ki-Woon;Lee, Yong-Bok;Chung, Ki-Yeol;Kim, Pil-Joo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.4
    • /
    • pp.194-201
    • /
    • 2005
  • Silicate (Si) fertilizers are well-known for soil amendment and to improve rice productivity as well as nitrogen efficiency. In this study, we investigated the possible reduction level of nitrogen fertilization for rice cultivation by amending Si fertilizer application. Field experiments were carried out to evaluate the productivity of rice (Oryza sativa L.) on a silt loam soil, where three levels of nitrogen (0, 110 and $165kg\;ha^{-1}$) were selected and Si fertilizer as a slag type was applied at 0, 1 and 2 times of the recommendation level (available $SiO_2\;130mg\;kg^{-1}$). Application of Si fertilizer increased significantly the rice yield and nitrogen efficiency. With increasing N uptake of rice, 1 and 2 times of recommended levels of Si fertilization could decrease nitrogen application level to about 76 and $102kg\;N\;ha^{-1}$ to produce the target yield, the maximum yield in the non-Si amended treatment. Silicate fertilizer improved soil pH and significantly increased available phosphate and Si contents. Conclusively, the Si fertilizer could be a good alternative source for soil amendment, restoring the soil nutrient balance and to reduce the nitrogen application level in rice cultivation.

Relationship between Yield and Weather Elements of Barley in Sunchon Area, Korea

  • Kwon, Byung-Sun
    • Plant Resources
    • /
    • v.7 no.1
    • /
    • pp.54-59
    • /
    • 2004
  • This study was conducted to investigate the relationships between yearly variations of weather elements and productivity in rice. In addition, coefficients of correlation among yield and yield components were used to find out the relationships between weather elements and productivity. Coefficients of variance (C.V.) of air temperature mean was considerable with 25%, but the variation by duration of sunshine was small in May. Culm length and number of spikes were great with c.v. of 21.5, 16.4%, respectively. Coefficients of correlation between temperatures of cultivation in May and yield were positive correlations. Coefficients of correlation between precipitation and sunshine of cultivation period from Oct. to May and yield were negative correlations. Coefficients of correlation amount the culm length, number of spikes, 1,000 grains wt. of seed, and yield were positively significant at the level of 1 %, respectively.

  • PDF