• Title/Summary/Keyword: Productive traits

Search Result 83, Processing Time 0.026 seconds

Genetic Relationship of Productive Life, Production and Type Traits of Korean Holsteins at Early Lactations

  • Wasana, Nidarshani;Cho, GwangHyun;Park, SuBong;Kim, SiDong;Choi, JaeGwan;Park, ByungHo;Park, ChanHyuk;Do, ChangHee
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.9
    • /
    • pp.1259-1265
    • /
    • 2015
  • The present study was performed to study the genetic relationship of productive life with production and type traits of Korean Holsteins at first three lactations. The data for the analysis from 56,054, 28,997, and 11,816 animals of first, second and third parity cows which were born from 2006 to 2011 were collected by Dairy Cattle Improvement Center, National Agricultural Co-operative Federation. Milk, protein and fat yields adjusted for 305 days and average somatic cell score considered as production traits and analyzed type traits were stature, strength, body depth, dairy form, rump angle, rump width, rear leg side view, foot angle, front attachment placement, rear attachment height, rear attachment width, udder cleft, udder depth, front teat placement and front teat length. A multi trait genetic analysis was performed using Wombat program with restricted maximum likelihood animal model composed of fixed effect of birth year, farm and the random effect of animal and random residual effect according to the traits. Heritability estimates of productive life were between 0.06 and 0.13. Genetic and phenotypic correlations between production and productive life traits ranged from 0.35 to 0.04 for milk, 0.16 to 0.05 for protein and 0.18 to 0.02 f 15-0034 (2nd) 150520 or fat. Somatic cells score showed a negative genetic and phenotypic correlation with productive life and also udder type traits, indicating that the selection for higher udder traits will likely to improve resistance to mastitis and persistence in the herd. Among all dairy form type traits, udder characters such as udder cleft showed a significant relationship with productive life. However, a specific change of heritabilities or correlations were not observed with the change of parity. Moreover, further studies are needed to further confirm the significance of the above traits and the effect of parity on above relationships in order to minimize both voluntary and involuntary culling rates while improving herd health and maintaining high yielding dairy cows.

Weighted single-step genome-wide association study to reveal new candidate genes for productive traits of Landrace pig in Korea

  • Jun Park;Chong-Sam Na
    • Journal of Animal Science and Technology
    • /
    • v.66 no.4
    • /
    • pp.702-716
    • /
    • 2024
  • The objective of this study was to identify genomic regions and candidate genes associated with productive traits using a total of 37,099 productive records and 6,683 single nucleotide polymorphism (SNP) data obtained from five Great-Grand-Parents (GGP) farms in Landrace. The estimated of heritabilities for days to 105 kg (AGE), average daily gain (ADG), backfat thickness (BF), and eye muscle area (EMA) were 0.49, 0.49, 0.56, and 0.23, respectively. We identified a genetic window that explained 2.05%-2.34% for each trait of the total genetic variance. We observed a clear partitioning of the four traits into two groups, and the most significant genomic region for AGE and ADG were located on the Sus scrofa chromosome (SSC) 1, while BF and EMA were located on SSC 2. We conducted Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), which revealed results in three biological processes, four cellular component, three molecular function, and six KEGG pathway. Significant SNPs can be used as markers for quantitative trait loci (QTL) investigation and genomic selection (GS) for productive traits in Landrace pig.

Puberty Related Changes in Hormonal Levels, Productive Performance, Carcass Traits, and Their Interactions in Slovakian White Gilts

  • Kolesarova, A.;Sirotkin, A.V.;Roychoudhury, S.;Capcarova, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.2
    • /
    • pp.182-187
    • /
    • 2010
  • The aim of this experiment was to evaluate the levels of hormones (progesterone, IGF-I and IGFBP-3) in blood plasma, growth, carcass traits and their interactions of sexually immature (n = 18) and sexually mature (n = 17) gilts. To calculate average daily weight gain (ADG), gilts were individually weighed at the beginning of the trial and at slaughter (110${\pm}$10 days old). Blood concentrations of progesterone, IGF-I and IGFBP-3 were determined by RIA. The right hot carcass sides were dissected and the individual basic parts from carcasses were weighed to record the carcass traits. IGFBP-3, ADG and carcass traits were not affected by pubertal maturation. Compared to sexually immature gilts, mature gilts had higher blood concentrations of progesterone and IGF-I. High correlations were noted between levels of some hormonal substances, productive performance and carcass traits of sexually immature and mature gilts.

Genetic Parameter Estimates for Reproductive and Productive Traits of Pig in a Herd (돼지의 번식형질과 산육형질에 대한 유전모수 추정)

  • Cho, Chung-Il;Ahn, Jin-Kuk;Lee, Joon-Ho;Lee, Deuk-Hwan
    • Journal of Animal Science and Technology
    • /
    • v.54 no.1
    • /
    • pp.9-14
    • /
    • 2012
  • The purpose of this study was to estimate heritabilities and genetic correlations for reproductive and productive traits and to apply their estimates to selection strategies in a swine population. Reproductive and productive traits considered in this study were number of born alive piglet (NBA), number of weaned piglet (NW), loin eye area (LEA), days to 90 kg (D90KG), back fat thickness (BF), and lean meat content (LEAN). Data were collected from 9,886 litters on 2,447 sows for reproductive traits and 10,181 gilts and boars for productive traits from Jan. 2000 to Dec. 2008 in a swine GGP farm. The statistical model to estimate genetic parameters for considering traits was a multiple traits animal model with including animal and maternal additive effects and litter effects on reproductive traits and animal additive effects on productive traits as random as well as some of fixed effects. For estimating (co) variance components of several random effects, restricted maximum likelihood methodology was used on this assumed model. The estimated heritabilities by animal additive effects and maternal effects were 0.07 and 0.02 for NBA and 0.03 and 0.02 for NW, respectively. Genetic correlation estimate for direct genetic effects between NBA and NW was 0.14. Heritability estimates for direct genetic effects were 0.19, 0.39, 0.36, and 0.43 for LEA, D90KG, BF and LEAN, respectively. The genetic correlation of LEA with LEAN was 0.35. Productive traits were antagonistically correlated with reproductive traits. From these results it is concluded that, if selection is done for strong positive effects of reproductive traits, then this would decline productive performance.

Estimation of genetic parameters of the productive and reproductive traits in Ethiopian Holstein using multi-trait models

  • Ayalew, Wondossen;Aliy, Mohammed;Negussie, Enyew
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.11
    • /
    • pp.1550-1556
    • /
    • 2017
  • Objective: This study estimated the genetic parameters for productive and reproductive traits. Methods: The data included production and reproduction records of animals that have calved between 1979 and 2013. The genetic parameters were estimated using multivariate mixed models (DMU) package, fitting univariate and multivariate mixed models with average information restricted maximum likelihood algorithm. Results: The estimates of heritability for milk production traits from the first three lactation records were $0.03{\pm}0.03$ for lactation length (LL), $0.17{\pm}0.04$ for lactation milk yield (LMY), and $0.15{\pm}0.04$ for 305 days milk yield (305-d MY). For reproductive traits the heritability estimates were, $0.09{\pm}0.03$ for days open (DO), $0.11{\pm}0.04$ for calving interval (CI), and $0.47{\pm}0.06$ for age at first calving (AFC). The repeatability estimates for production traits were $0.12{\pm}0.02$, for LL, $0.39{\pm}0.02$ for LMY, and $0.25{\pm}0.02$ for 305-d MY. For reproductive traits the estimates of repeatability were $0.19{\pm}0.02$ for DO, and to $0.23{\pm}0.02$ for CI. The phenotypic correlations between production and reproduction traits ranged from $0.08{\pm}0.04$ for LL and AFC to $0.42{\pm}0.02$ for LL and DO. The genetic correlation among production traits were generally high (>0.7) and between reproductive traits the estimates ranged from $0.06{\pm}0.13$ for AFC and DO to $0.99{\pm}0.01$ between CI and DO. Genetic correlations of productive traits with reproductive traits were ranged from -0.02 to 0.99. Conclusion: The high heritability estimates observed for AFC indicated that reasonable genetic improvement for this trait might be possible through selection. The $h^2$ and r estimates for reproductive traits were slightly different from single versus multi-trait analyses of reproductive traits with production traits. As single-trait method is biased due to selection on milk yield, a multi-trait evaluation of fertility with milk yield is recommended.

A study on the relationship between the longevity and profitability of dairy cattle (젖소의 장수성과 수익성 관계 연구)

  • Do, Chang Hee;Cho, Jae Sung;Cho, Kwang Hyun;Yang, Boh Suk;Yun, Ho Baek;Lee, Ji Su
    • Korean Journal of Agricultural Science
    • /
    • v.42 no.3
    • /
    • pp.245-251
    • /
    • 2015
  • Records of 490,767 cows collected from 1990 to 2012 by dairy herd milk test of National Agriculture Cooperative Federation The pedigree of dairy cattle were provided by Korea Animal Improvement Association. The data were used to analyze the longevity of dairy cows with the life traits such as days in milk, number of lactation, productive life, and life span. The data were also used to investigate genetic relationship of these longevity traits with profitability of dairy cows, including heritability and genetic correlation. The profitability was calculated with simulation of milk income and production costs for individual cows. Days in milk among the traits had -0.287, -0.572 and -0.536 of genetic correlation with number of lactations, productive life and lifespan, respectively. The heritabilities of life span, number of lactations, productive life, and days in milk were found to be 0.045, 0.047, 0.059 and 0.081, respectively. Genetic correlations of profit with productive life, number of lactations, and days in milk were identified as 0.072, 0.080, 0.098 and 0.101. These results suggested that days in milk was most desirable traits to represent longevity of Holstein dairy cattle. In general, since longevity and profitability were close genetic relationship each other, genetic improvement of longevity is necessary for better profitable cows.

Estimation of Genetic Parameters and Trends for Length of Productive Life and Lifetime Production Traits in a Commercial Landrace and Yorkshire Swine Population in Northern Thailand

  • Noppibool, Udomsak;Elzo, Mauricio A.;Koonawootrittriron, Skorn;Suwanasopee, Thanathip
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.9
    • /
    • pp.1222-1228
    • /
    • 2016
  • The objective of this research was to estimate genetic parameters and trends for length of productive life (LPL), lifetime number of piglets born alive (LBA), lifetime number of piglets weaned (LPW), lifetime litter birth weight (LBW), and lifetime litter weaning weight (LWW) in a commercial swine farm in Northern Thailand. Data were gathered during a 24-year period from July 1989 to August 2013. A total of 3,109 phenotypic records from 2,271 Landrace (L) and 838 Yorkshire sows (Y) were analyzed. Variance and covariance components, heritabilities and correlations were estimated using an Average Information Restricted Maximum Likelihood (AIREML) procedure. The 5-trait animal model contained the fixed effects of first farrowing year-season, breed group, and age at first farrowing. Random effects were sow and residual. Estimates of heritabilities were medium for all five traits ($0.17{\pm}0.04$ for LPL and LBA to $0.20{\pm}0.04$ for LPW). Genetic correlations among these traits were high, positive, and favorable (p<0.05), ranging from $0.93{\pm}0.02$ (LPL-LWW) to $0.99{\pm}0.02$ (LPL-LPW). Sow genetic trends were non-significant for LPL and all lifetime production traits. Sire genetic trends were negative and significant for LPL ($-2.54{\pm}0.65d/yr$; p = 0.0007), LBA ($-0.12{\pm}0.04piglets/yr$; p = 0.0073), LPW ($-0.14{\pm}0.04piglets/yr$; p = 0.0037), LBW ($-0.13{\pm}0.06kg/yr$; p = 0.0487), and LWW ($-0.69{\pm}0.31kg/yr$; p = 0.0365). Dam genetic trends were positive, small and significant for all traits ($1.04{\pm}0.42d/yr$ for LPL, p = 0.0217; $0.16{\pm}0.03piglets/yr$ for LBA, p<0.0001; $0.12{\pm}0.03piglets/yr$ for LPW, p = 0.0002; $0.29{\pm}0.04kg/yr$ for LBW, p<0.0001 and $1.23{\pm}0.19kg/yr$ for LWW, p<0.0001). Thus, the selection program in this commercial herd managed to improve both LPL and lifetime productive traits in sires and dams. It was ineffective to improve LPL and lifetime productive traits in sows.

Identification of Productive Mulberry Silkworm Hybrids Resistant to Densonucleosis Virus Type 1 (BmDNV1)

  • Rao, P. Sudhakara;Nataraju B.;Balavenkatasubbaiah M.;Dandin S.B.
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.13 no.2
    • /
    • pp.109-112
    • /
    • 2006
  • The use of commercial silkworm hybrids resistant to important silkworm diseases is economical and better option particularly in tropical areas. This necessitated the evolution of productive bivoltine silkworm breeds non-susceptible to $BmDNV_1$. Non-susceptibility to $BmDNV_1$, infection was found to be controlled by a single recessive gene, nsd-l or a dominant gene, Nid-l. A major dominant/recessive gene confers resistance to $BmDNV_1$, from potent donor parents have been transferred to 10 productive but susceptible bivoltine silkworm strains through conventional breeding methods. By utilizing these breeds prepared 25 hybrids $(5{\times}5)$ and hybrid evaluation was carried out to identify most promising hybrids resistant to $BmDNV_1$. All these hybrids are inoculated with $BmDNV_1$ inoculum along with productive control hybrid $CSR2{\times}CSR4$ and reared under standard rearing procedure. Based on inoculated rearing and test reeling results, two most promising hybrids $(CSR18DR{\times}CSR29DR\;and\;CSR21DR{\times}CSR50DR)$ were selected for commercial exploitation. The selected hybrids have shown a survival rate of >85% with productive traits, where as control hybrid have shown 11.1% survival with inferior cocoon traits. The methodologies adopted were discussed.

Lifetime Performance of Nili-ravi Buffaloes in Pakistan

  • Bashir, M.K.;Khan, M.S.;Bhatti, S.A.;Iqbal, A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.5
    • /
    • pp.661-668
    • /
    • 2007
  • Data on 1,037 Nili-Ravi buffaloes from four institutional herds were used to study lifetime milk yield, herd life, productive life and breeding efficiency. A general linear model was used to study the environmental effects while an animal model having herd, year of birth and age at first calving (as covariate) along with random animal effect was used to estimate breeding values. The lifetime milk yield, herd life, productive life and breeding efficiency averaged $7,723{\pm}164$ kg, $3,990{\pm}41$ days, $1,061{\pm}19$ days and 64 percent, respectively. All the traits were significantly (p<0.01) affected by the year of birth and herd of calving, while the herd life was also affected (p<0.01) by the age at first calving. The heritabilities for lifetime milk yield, herd life, productive life and breeding efficiency were $0.093{\pm}0.056$, $0.001{\pm}0.055$, $0.144{\pm}0.079$ and 0.001, respectively. The definition for productive life, where each lactation gets credit upto 10 months had slightly better heritability and may be preferred over the definition where no limit is placed on lactation length. The genetic correlation between productive life and lifetime milk yield was low but high between productive life and herd life. The selection for productive life will increase herd life while lifetime milk yield will also improve. The overall phenotypic trend during the period under the study was negative for lifetime milk yield (-280 kg/year), herd life (-93 days), productive life (-42 days/year) and breeding efficiency (-0.36 percent/year), whereas the genetic trend was positive for lifetime milk yield (+15 kg/year) and productive life (+4 days/year).

Association between PCR-RFLP Polymorphism of the Fifth Intron in Lipoprotein Lipase Gene and Productive Traits in Pig Resource Family

  • Zhang, B.Z.;Lei, M.G.;Deng, C.Y.;Xiong, Y.H.;Zuo, B.;Li, F.E.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.4
    • /
    • pp.458-462
    • /
    • 2005
  • The study was aimed at detecting polymorphism of the fifth intron in lipoprotein lipase (LPL) gene and analyzing association between the polymorphism and productive traits. A pair of primers was designed for amplifying the fifth intron. Sequence analysis indicated that a G1171C substitution existed in Large White breed. The mutation was detected by PCR-AfaI-RFLP. Polymorphism analysis in a pig resource family showed that there existed significant effects on carcass and meat quality traits. Thoraxwaist fat thickness of BB genotype was significantly higher (14.2%, p<0.05) than that of AA on carcass traits, while BB genotype was significantly lower (3.6% p<0.01, 4.1% p<0.01; 2.3% p<0.01, 1.9% p<0.01; 1.8% p<0.01, 1.4% p<0.05) than AA and AB genotype in pH of m. Longissimus Dorsi (LD), m. Biceps Femoris (BF), m. Semipinali Capitis (SC). The allelic frequencies were also significantly different between indigenous Chinese breeds and exotic breeds. Data analyzed revealed that the mutation locus affected production traits mostly by additive effects. Based on these results, it is necessary to do more studies on LPL gene before making the LPL locus into the application of marker-assisted selection (MAS) programs.