• Title/Summary/Keyword: Production-process Improvement

Search Result 762, Processing Time 0.03 seconds

High Brightness Prism Light-guide Plate for TFT-LCDs Using Optical Simulation and Novel Injection Mold Process (광학시뮬레이션과 새로운 사출성형법을 사용한 TFT-LCD용 고휘도 프리즘 도광판)

  • Han, Jeong-Min;Shon, Jin-Geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.61 no.2
    • /
    • pp.93-96
    • /
    • 2012
  • We have designed high performance prism light-guide plate (LGP) in 17 inch TFT-LCD. In test result to embody high brightness BLU in case of LGP of base and upper surface with 17 inch, thickness 8mm adding prism construct. Using optical simulation, we forecast the brightness and uniformity in LGP with prism structure. And we adopted novel injection mold method and Nickel stamper to make actual evolution sample. Novel injection mold process has steady heating time zone in heat cycle time of injection mold process. For this novel heat cycle control, we achieved above 90[%] height prism structure as our design. It is superior brightness improvement than previous that of printing form about some 20[%] and in this course to embody actual material it succeeded prism LGP production by 17 inch injection form process.

Cleaner Production Management using Evaluation Method of Environmental Impact of ISO14001 (ISO14001 환경영향평가방법을 이용한 청정공정관리 - Tourah Portland Cement회사를 중심으로 -)

  • Park, Young G.
    • Clean Technology
    • /
    • v.5 no.2
    • /
    • pp.13-23
    • /
    • 1999
  • The unique method for evaluating the environmental impact, which is restricted to use in BS7750, was performed to determine the priority for reducing environmental loads in the cement process. Mass balance in the unit process was achieved, it was utilized to introduce the matrix method which are composed of two different evaluation's criteria by occurrence possibility and by occurrence results. The purpose of this paper is first to explain the matrix method in the practical plant and secondly to show the successful examples of enviromental improvement. Conclusively, the seriousness of environmental impact could be quantified in several different unit processes and suggested some progressive results obtained after process improvement.

  • PDF

Technology Improvement Assessment of Gas Hydrate R&D Project using Analytic Network Process (네트워크 분석과정을 적용한 가스하이드레이트 개발 사업의 기술향상도 평가)

  • Song, Sueng-GGock;Heo, Eunng-Yung;Lee, You-Ah
    • Journal of Korea Technology Innovation Society
    • /
    • v.14 no.1
    • /
    • pp.60-84
    • /
    • 2011
  • This study accomplished technology improvement assessment of Gashydrate R&D project using ANP method which can deal with the sophisticated decisions involving a variety of interactions and dependencies. Criteria were selected by consultation and questionnaires with experts in four technology parts of gas hydrate project, and then the network was formed from relation with criteria and alternatives. As the result of analysis, the weight matrix was derived and the various relation in the network was able to be verified. The analysis was accomplished with four technology parts - geophysical exploration technology, geological and geochemical technology, analysis of deep-drill cores and stability technology, production technology - and the 'reliability' criterion ranked the highest of all parts. The rank of other criteria and the result of technology improvement assessment reflected the level of each technology. Thus, the result of this study will contribute to policy decision-making for developing and evaluating gas hydrate technology and other R&D projects.

  • PDF

A study on the performance improvement of the quality prediction neural network of injection molded products reflecting the process conditions and quality characteristics of molded products by process step based on multi-tasking learning structure (다중 작업 학습 구조 기반 공정단계별 공정조건 및 성형품의 품질 특성을 반영한 사출성형품 품질 예측 신경망의 성능 개선에 대한 연구)

  • Hyo-Eun Lee;Jun-Han Lee;Jong-Sun Kim;Gu-Young Cho
    • Design & Manufacturing
    • /
    • v.17 no.4
    • /
    • pp.72-78
    • /
    • 2023
  • Injection molding is a process widely used in various industries because of its high production speed and ease of mass production during the plastic manufacturing process, and the product is molded by injecting molten plastic into the mold at high speed and pressure. Since process conditions such as resin and mold temperature mutually affect the process and the quality of the molded product, it is difficult to accurately predict quality through mathematical or statistical methods. Recently, studies to predict the quality of injection molded products by applying artificial neural networks, which are known to be very useful for analyzing nonlinear types of problems, are actively underway. In this study, structural optimization of neural networks was conducted by applying multi-task learning techniques according to the characteristics of the input and output parameters of the artificial neural network. A structure reflecting the characteristics of each process step was applied to the input parameters, and a structure reflecting the quality characteristics of the injection molded part was applied to the output parameters using multi-tasking learning. Building an artificial neural network to predict the three qualities (mass, diameter, height) of injection-molded product under six process conditions (melt temperature, mold temperature, injection speed, packing pressure, pacing time, cooling time) and comparing its performance with the existing neural network, we observed enhancements in prediction accuracy for mass, diameter, and height by approximately 69.38%, 24.87%, and 39.87%, respectively.

Finding Optimal Conditions for the Densification Process of Carbon Materials (탄소 소재 치밀화 공정의 밀도향상을 위한 최적 조건 설정)

  • Kwon, Choonghee;Yang, Jaekyung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.3
    • /
    • pp.76-82
    • /
    • 2017
  • Recently, the material industry in the world has started appreciating the value of new materials that can overcome the limitation of steel material. In particular, new materials are expected to play a very important role in the future industry, demonstrating superior performance compared to steel in lightweight materials and ability to maintain in high temperature environments. Carbon materials have recently increased in value due to excellent physical properties such as high strength and ultra lightweight compared to steel. However, they have not overcome the limitation of productivity and price. The carbon materials are classified into various composites depending on the purpose of use and the performance required. Typical composites include carbon-glass, carbon-carbon, and carbon-plastic composites. Among them, carbon-carbon composite technology is a necessary technology in aviation and space, and can be manufactured with high investment cost and technology. In this paper, in order to find the optimal conditions to achieve productivity improvement and cost reduction of carbon material densification process, the correlation between each process parameters and results of densification is first analyzed. The main process parameters of the densification process are selected by analyzing the correlation results. And then a certain linear relationship between major process variables and density of carbon materials is derived by performing a regression analysis based on the historical production result data. Using the derived casualty, the optimal management range of major process variables is suggested. Effective process operation through optimal management of variables will have a great effect on productivity improvement and manufacturing cost reduction by shortening the lead time.

Project Management for the Productivity Improvement of Small and Medium-sized Enterprises (SMEs): Industrial Machinery and Equipment Manufacturing Enterprises (중소기업 생산성 향상을 위한 기계설비 제작 프로젝트 관리: 산업기계설비 제조기업을 중심으로)

  • Song, Youngmin;Jeong, Jongpil;Park, Byungjun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.1
    • /
    • pp.1-12
    • /
    • 2019
  • In this paper, it was found that most of the machinery facilities problems generated by clients could be prevented in advance by systematically managing the mechanical equipment production process of small and medium enterprises (SMEs) that produce machinery facilities. Major point of this process is to establish an operating system that corresponds to reality of facility manufacturers as it represents 63% of machinery facilities problems that occur in customers and is a task that needs to be solved most intensively. Technical issues account for 23% of machinery facilities problems occurring at the client's companies and should be approached from a long-term perspective as they are directly related to the technical capabilities of the manufacturers. Organizational problems account for 14% of machinery facilities problems occurring in customer companies, and can change depending on the relationship of members and the nature of the human being, such as morality and motivation. In addition, we propose the establishment of an Internet-based production process management platform for smooth and efficient transfer of information between customers and machinery facilities manufacturers.

Development of Auto Polishing System for Automobile Door A-Fuel Filler using Image Processing (영상처리를 이용한 자동차 도어필러의 자동 폴리싱 시스템 개발)

  • Kim, Seong-Jin;Lee, Seong-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.4
    • /
    • pp.1807-1812
    • /
    • 2014
  • A plastic has a various advantages in engineering elements that it can be formed a curve surface without restriction of shape and product the high volume with various color and lower price. Also, it is being used for many parts of automobile as the weight of cars is getting lighter. The Door A-Fuel Filler is a automobile plastic part by injection molding production. The injected products are involved a lot of factors for the inferior goods after painting. Therefore the painted products are required to have the process of the polishing in order to eliminate the faults. Now polishing process is being worked by hands. The workers tend to evade the process of polishing because the working needs a lot of powers momentarily. This paper presents the development of auto-polishing system that can check the inferior goods by the vision system and control the polishing process by the motion system. As a result, Shorten production time (30 seconds), and decreases by 1 person to work to increase the competitiveness of the production cost was to expect improvement.

Effect of Surface Treatment of CdS-TiO2 Composite Photocatalysts with Film Type on Hydrogen Production (수소제조에 관한 박막형 CdS-TiO2 복합 광촉매계의 표면처리 효과)

  • Jang, Jum-Suk;So, Won-Wook;Kim, Kwang-Je;Moon, Sang-Jin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.1
    • /
    • pp.34-41
    • /
    • 2002
  • CdS and $TiO_2$ nanoparticles were made by the precipitation method and sol-gel method, respectively, and they were mixed mechanically and then treated with the hydrothermal processing. CdS-$TiO_2$ composite particulate films were thus prepared by casting CdS-$TiO_2$ mixed sol onto $SnO_2$ conducting glass and a subsequent heat-treatment at $400^{\circ}C$. Again, the physico-chemical and photoelectrochemical properties of these films were controlled by the surface treatment with $TiCl_4$ aqueous solution. The photocurrents and the hydrogen production rates measured under the present experimental conditions varied in the range of $3.5{\sim}4.5mA/cm^2$ and $0.3{\sim}1.8cc/cm^2$-hr, respectively, and showed the maximum values at the $CdS/[CdS+TiO_2]$ mole ratio of 0.2. Also, the surface treatment with $TiCl_4$ aqueous solution caused a considerable improvement in the photocatalytic activity, Probably as a result of close contacts between the primary particles by the etching effect of $TiCl_4$ It was found that the photoelectrochemical performance of these particulate films could be effectively enhanced by this approach.

Life Cycle Assessment for Hydrogen Production Method using Stream Reforming of Naphtha (Naphtha의 stream reforming에 의한 수소제조방법에 대한 전과정평가)

  • Park, Hee-Il;Kim, Ik;Lee, Byung-Kwon;Hur, Tak
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.1
    • /
    • pp.3-12
    • /
    • 2002
  • In this study, it achieved life cycle assessment to estimate environmental performance for naphtha steam reforming that account for the production over 50% of total hydrogen output. Although hydrogen dosen't emit air emissions, especially, $CO_2$, a large of $CO_2$ is emitted in hydrogen production process. In the result of this study, it ascertained the truth that $CO_2$ is emitted at the rate of $6.3kg/kgH_2$ and that result from steam reforming reaction and use of fossil fuel in hydrogen manufacturing process. Above all, 57% of total $CO_2$ emissions is emitted in process of steam reforming of naphtha and so it knew that the principle of steam reforming is key issue in aspect to environment. Also, it compared hydrogen by fuel of fuel cell vehicle with gasoline fuel of general gasoline vehicle to analyze relative environment of hydrogen for fossil fuel during the life cycle. As the result, it might be difficult in improvement of environment because $CO_2$ emissions during the hydrogen manufacturing process is nearly the same with that during the use of gasoline.

Photoelectrochemical and Hydrogen Production Characteristics of CdS-TiO2 Nanocomposite Photocatalysts Synthesized in Organic Solvent (유기용매상에서 제조된 수소제조용 CdS-TiO2 나노복합 광촉매의 특성 연구)

  • Jang, Jum-Suk;So, Won-Wook;Kim, Kwang-Je;Moon, Sang-Jin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.3
    • /
    • pp.224-232
    • /
    • 2002
  • CdS-$TiO_2$ nano-composite sol was prepared by the sol-gel method in organic solvents at room temperature and further hydrothermal treatment at various temperatures to control the physical properties of the primary particles. Again, CdS-$TiO_2$ composite particulate films were made by casting CdS-$TiO_2$ sols onto $F:SnO_2$ conducting glass and then heat-treatment at $400^{\circ}C$. Physical properties of these 61ms were further controlled by the surface treatment with $TiCl_4$, aqueous solution. The photo currents and hydrogen production rates measured under the experimental conditions varied according to the $CdS/[CdS+TiO_2]$ mole ratio and the mixed-sol preparation method. For $CdS-TiO_2$ composite sols prepared in IPA, CdS particles were homogeneously surrounded by $TiO_2$ particles. Also, the surface treatment with $TiCl_4$ aqueous solution caused a considerable improvement in the photocatalytic activity, probably as a result of close contacts between the primary particles by the etching effect of $TiCl_4$. It was found that the photoelectrochemical performance of these particulate films could be effectively enhanced by this approach.