• Title/Summary/Keyword: Production process

Search Result 9,541, Processing Time 0.034 seconds

Two-Step Process Using Immobilized Saccharomyces cerevisiae and Pichia stipitis for Ethanol Production from Ulva pertusa Kjellman Hydrolysate

  • Lee, Sang-Eun;Kim, Yi-Ok;Choi, Woo Yong;Kang, Do-Hyung;Lee, Hyeon-Yong;Jung, Kyung-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.10
    • /
    • pp.1434-1444
    • /
    • 2013
  • We established a two-step production process using immobilized S. cerevisiae and P. stipitis yeast to produce ethanol from seaweed (U. pertusa Kjellman) hydrolysate. The process was designed to completely consume both glucose and xylose. In particular, the yeasts were immobilized using DEAE-corncob and DEAE-cotton, respectively. The first step of the process included a continuous column reactor using immobilized S. cerevisiae, and the second step included a repeated-batch reactor using immobilized P. stipitis. It was verified that the glucose and xylose in 20 L of medium containing the U. pertusa Kjellman hydrolysate was converted completely to about 5.0 g/l ethanol through the two-step process, in which the overall ethanol yield from total reducing sugar was 0.37 and the volumetric ethanol productivity was 0.126 g/l/h. The volumetric ethanol productivity of the two-step process was about 2.7 times greater than that when P. stipitis was used alone for ethanol production from U. pertusa Kjellman hydrolysate. In addition, the overall ethanol yield from glucose and xylose was superior to that when P. stipitis was used alone for ethanol production. This two-step process will not only contribute to the development of an integrated process for ethanol production from glucose-and xylose-containing biomass hydrolysates, but could also be used as an alternative method for ethanol production.

Cleaner Production System in Dyeing & Finishing Its Approaching Mehods (염색가공분야에서 청정생산활동 접금방법)

  • Lee, Hae-Jung;Nam, Chang-Woo;Park, Young-Hwan
    • Clean Technology
    • /
    • v.9 no.2
    • /
    • pp.87-100
    • /
    • 2003
  • The aim of study was to suggest a methodology for applying cleaner production technology in dyeing & finishing process of textile materials. To accomplish cleaner production, we performed consulting activity in dyeing factory, which composed of following different procedures. First, we organized consulting team with specialists for dyeing, energy and chemicals, and visited dyeing companies for the purpose of doing basic investigation such as analysis of process, chemicals & effluents, condition of equipment and process flow of products. Environmental aspect of raw materials (dyestuff, chemicals) was assessed by TOC, COD, BOD, and effluent of that was assessed by TOC, COD, BOD, TDS and pH. Second, We find out the problems in dyeing&finishing process from the view point of dyeing process, energy, raw materials and process management by utilizing MB (material balance), LCA(Life Cycle Assessment), EB(Energy Balance). Third, we generated the solutions to achieve optimal process condition by brain storming method, and then implemented the solutions to each process. Finally, we determined their effectiveness after considering the results of repeating trials for the solutions. Cleaner production could be achieved by keeping optimal process conditions, equipment modification, improved production management, and on-site reuse or recycling.

  • PDF

A study on reduction of unsuitable products and productivity through the analysis on the process (공정분석을 통한 부적합품 감소와 생산성 향상 연구)

  • Ki, Young-Chan;Kang, Kyung-Sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.18 no.4
    • /
    • pp.171-177
    • /
    • 2016
  • The goals of enterprises are to use resources efficiently, minimize the costs or reduce unsuitable products with efficient process or production environment and take competitive advantages through efforts such as proper supply of good products, etc. so as to satisfy diversified customers and survive in rough competition. To reduce production costs, it's inevitable to make unsuitable products during the production in manufacturing process. Therefore, this researcher grasped LED assembly process and drew the results of productivity improvement through process analysis so as to improve productivity by process anlaysis.

Design Process of Robotic Cell and Layout Design Tool (로봇 셀 설계절차와 레이아웃 작업 지원 도구)

  • Guk, Geum-Hwan;Park, Jun-Mo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.6 s.177
    • /
    • pp.1379-1389
    • /
    • 2000
  • In this study, a design process of robotic cell is presented. This paper focuses only on the automation of workpiece handling with robot. The presented design process enables us to analyze effectiv ely the original production system and to redesign it as an optimum production system with robots. An original production system is analyzed with respect to its economical and technological requirements for automation. If automation of the given production system is feasible, the conceptual design for automation is firstly derived. Next, the detail design is derived for the optimum conceptual design. Finally, an optimum system solution is determined after the economical and technical evaluation of all the derived detail designs. The all specifications of each element of the redesigned production system and its layout are determined at the detail design phase. This paper shows a low cost supporting tool for layout design of robotic cell with SCARA type robots.

APPLICATION OF DISCRETE EVENT SIMULATION TO PRODUCTION SCHEDULING (이산적 시뮬레이션 모델을 이용한 생산 스케쥴)

  • 박영홍
    • Journal of the Korea Society for Simulation
    • /
    • v.10 no.1
    • /
    • pp.1-12
    • /
    • 2001
  • This article describes the application of discrete event simulation in a process industry (coffee manufacturing) as a daily production-scheduling tool. A large number of end products (around 300), sporadic demand, and limited shelf life of coffee (90 days) make it difficult to generate feasible production schedules manually. To solve this problem, an integrated system was developed incorporating discrete event simulation methodology into scheduling process. The integrated system is comprised of two components: a scheduling program and a simulation model. The scheduling program is used to generate daily schedules for roasting, grinding, and packing coffee. The simulation model uses the generated schedules to simulate the production of coffee and regenerates a modified production schedule. In this paper, each of the components will be described in detail, evaluated in terms of performance factors, and validated with a set of real production data. Although this article focuses on a specific system, we will share our experiences and Intuitions gained and encourage other process industries to develop simulation-based scheduling tools.

  • PDF

A Study on Improving the Production and Shipment Using MES System (MES 시스템을 이용한 생산 및 출하 신뢰성 향상에 관한 연구)

  • Cho, Joong-Hyun;Bae, Byeong-Gon;Kang, Kyung-Sik
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2007.04a
    • /
    • pp.73-80
    • /
    • 2007
  • Recently, the strategy of the age of limitless competition for existence of manufacturing company appears for the enhancement of productivity through the automatic system, the reduction for the cost for standardization and the decision making process for the information system. Especially the critical success factors in manufacturing company can be summarized for the establishment of production visibility through the production management, material & work-in-process management, the establish of the flexible manufacturing system for the changed order priority and the establish of the quality system for improvement of product and process quality. The existing production management systems supply only simple information about production results on real time, can delay quick decision making. And it can prevent acquiring the information about various customer needs and the communication problems with other systems. In this paper, it will show MES system, a solution for the problems of existing production management systems. And through a case study of D company, it will reveal improvement effect on shipment error using MES system and economic analysis for MES itself.

  • PDF

The Preparation Characteristics of Hydrogen Permselective Membrane in IS Process of Nuclear Hydrogen Production (원자력 수소제조 IS 공정의 수소분리막 제조 특성)

  • Son, Hyo-Seok;Choe, Ho-Sang;Kim, Jeong-Min;Hwang, Gap-Jin;Park, Ju-Sik;Bae, Gi-Gwang
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2005.11a
    • /
    • pp.119-123
    • /
    • 2005
  • The thermochemical splitting of water has been proposed as a clean method for hydrogen production. The IS process is one of the thermochemical water splitting processes using iodine and sulfur as reaction agents. HI decomposition procedure to obtain hydrogen is one of the key operations in the process, because equilibrium conversion of HI is low (22% at $450^{\circ}C$). The silica membranes prepared by CVD. method were applied to the decomposition reaction of HI vapor. The permeation characteristics of hydrogen and nitrogen belong to the Knudsen flow pattern.

  • PDF

Collaborative Object-Oriented Analysis for Production Control Systems

  • Kim, Chang-Ouk
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.23 no.56
    • /
    • pp.19-34
    • /
    • 2000
  • Impact of business process re-engineering requires the fundamental rethinking of how information systems are analyzed and designed. It is no longer sufficient to establish a monolithic system for fixed business environments. Information systems must be adaptive in nature. This demand is also applied in production domain. Enabling concept for the adaptive information system is reusability. This paper presents a new object-oriented analysis process for creating such reusable software components in production domain, especially for production planning and scheduling. Our process called MeCOMA is based on three meta-models: physical object meta-model, data object meta-model, and activity object meta-model. After the three meta-models are extended independently for a given production system, they are collaboratively integrated on the basis of integration pattern. The main advantages of MeCOMA are (1) to reduce software development time and (2) to consistently build reusable production software components.

  • PDF

A Study on Determine CONWIP(Constant Work In Process) System Model in the Dynamic Environment (동적환경하에서의 CONWIP(Constant Work In Process) 시스템 모델설정에 관한 연구)

  • 송관배;박재현;강경식
    • Journal of the Korea Safety Management & Science
    • /
    • v.5 no.4
    • /
    • pp.209-217
    • /
    • 2003
  • The traditional Kanban needs a lot of preconditions for fitting conditions of dynamic production processing environment. The traditional Kanban isn't suitable conditions of dynamic production processing environment. Therefore conditions of dynamic production processing environment is needed more stable system. This study is describe CONWIP system such as suitable in dynamic production processing environment. Most Pull system is a Kanban system than use Kanban cards or signal for production management and inventory control. The object of Kanban system is reducing inventory between shop-floor that can reduce inventiry cost. If the system reduce the number of Kanban cards would be reduce the working process WIP, can be reduced and can be found all potential problem of production between shop-floors. This study apply to CONWIP system model for Korean industrial companies.

기계고장을 고려한 생산및 품질검증 정책

  • 이창환
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.04a
    • /
    • pp.298-301
    • /
    • 1996
  • This paper addresses the effects of an imperfect production process on the optimal production quantity and quality inspection policies. The system is assumed to deteriorate during the production process. The results are either defective products or machine breakdown whether multiple quality inspection is worth or not. Furthermore, when multiple inspection policy is adopted, the optimal inspection schedule is shown to be equally spaced throughout the production cycle. Exact solution and approximation of the optimal production quantity and approximation of the optimal number of inspection are provided. Finally, to better understand the model of this paper, comparisons between this model and classical EMQ model are provided.

  • PDF