• Title/Summary/Keyword: Production index

Search Result 1,706, Processing Time 0.024 seconds

Contactless Data Society and Reterritorialization of the Archive (비접촉 데이터 사회와 아카이브 재영토화)

  • Jo, Min-ji
    • The Korean Journal of Archival Studies
    • /
    • no.79
    • /
    • pp.5-32
    • /
    • 2024
  • The Korean government ranked 3rd among 193 UN member countries in the UN's 2022 e-Government Development Index. Korea, which has consistently been evaluated as a top country, can clearly be said to be a leading country in the world of e-government. The lubricant of e-government is data. Data itself is neither information nor a record, but it is a source of information and records and a resource of knowledge. Since administrative actions through electronic systems have become widespread, the production and technology of data-based records have naturally expanded and evolved. Technology may seem value-neutral, but in fact, technology itself reflects a specific worldview. The digital order of new technologies, armed with hyper-connectivity and super-intelligence, not only has a profound influence on traditional power structures, but also has an a similar influence on existing information and knowledge transmission media. Moreover, new technologies and media, including data-based generative artificial intelligence, are by far the hot topic. It can be seen that the all-round growth and spread of digital technology has led to the augmentation of human capabilities and the outsourcing of thinking. This also involves a variety of problems, ranging from deep fakes and other fake images, auto profiling, AI lies hallucination that creates them as if they were real, and copyright infringement of machine learning data. Moreover, radical connectivity capabilities enable the instantaneous sharing of vast amounts of data and rely on the technological unconscious to generate actions without awareness. Another irony of the digital world and online network, which is based on immaterial distribution and logical existence, is that access and contact can only be made through physical tools. Digital information is a logical object, but digital resources cannot be read or utilized without some type of device to relay it. In that respect, machines in today's technological society have gone beyond the level of simple assistance, and there are points at which it is difficult to say that the entry of machines into human society is a natural change pattern due to advanced technological development. This is because perspectives on machines will change over time. Important is the social and cultural implications of changes in the way records are produced as a result of communication and actions through machines. Even in the archive field, what problems will a data-based archive society face due to technological changes toward a hyper-intelligence and hyper-connected society, and who will prove the continuous activity of records and data and what will be the main drivers of media change? It is time to research whether this will happen. This study began with the need to recognize that archives are not only records that are the result of actions, but also data as strategic assets. Through this, author considered how to expand traditional boundaries and achieves reterritorialization in a data-driven society.

The Effects of Supplemental Bacterial Phytase to the Calcium and Nonphosphorus Levels in Feed of Laying Hens (산란계 사료 내 칼슘 및 무기태 인 수준에 따른 Bacterial Phytase 급여 효과)

  • Kang, H.K.;Park, S.Y.;Yu, D.J.;Kim, J.H.;Kang, G.H.;Na, J.C.;Kim, D.W.;Suh, O.S.;Lee, S.J.;Lee, W.J.;Kim, S.H.
    • Korean Journal of Poultry Science
    • /
    • v.35 no.2
    • /
    • pp.143-151
    • /
    • 2008
  • This study was conducted to identify the correlation of bacterial phytase ($Transphos^{(R)}$) to the calcium level in feed. Of all 21-week-old 720 HyLine brown laying hens, 2 birds of similar weight were placed on each individual cage. The experiment was conducted by $3{\times}2{\times}3$ factorial design with including 3 different levels of phytase (0, 300, and 1,000 DPU/kg), 2 different levels of calcium (3.5% and 4.0%), and 3 different levels of no NPP addition 0% (0.095 NPP), 0.5% (0.185% NPP), and 1.0% (0.275% NPP). The feeding trial maintained the ME level of 2,800 kcal/kg and 16% for crude protein. The diet was fed ad libitum and 17 hours of lighting was provided throughout the experimental period. Egg production seemed to increase, in the 300 DPU of bacterial phytase added group and the cracked egg tended to reduce in Transphos added group. The egg productivity between treatment groups did not show significant difference by dietary calcium level, whereas non NPP added group (0.095% NPP) was found to be low compared to NPP added groups (P<0.05). The highest mean egg weight and the highest daily egg mass were detected in 300 DPU phytase added group. Although the mean egg weight was significantly higher in treatment groups fed with 3.5% calcium containing feeds (P<0.05), daily egg mass was no among treatment groups. The mean egg weight and daily egg mass were the lowest in non NPP added group (0.095% NPP) compared to other treatment groups (P<0.05). The feed intake showed similar pattern regardless of the bacterial phytase and calcium levels in the diet. However, the treatment groups fed diets containing NPP level of 0.275% and 0.165% showed significantly higher feed intake than the group fed with 0.095% NPP (P<0.05). Although the feed conversion was not affected by calcium and NPP levels in the diet, the most improved result was obtained from 300 DPU phytase added group (P<0.05). The eggshell breaking strength and thickness increased as dietary calcium level increase the level of calcium increases in diet. The treatment groups fed diet containing 0.275% and 0.165% NPP revealed to show improvement in eggshell breaking strength and yolk color index compared to the NPP non added (0.095% NPP) treatment group. The result of the present study suggests that the appropriate level of microbial phytase is 300 DPU and at this level, tricalciumphosphate supplementation in feed can be reduced to 40% of NRC recommendation. Higher calcium level in feed fail to show synergistic effect by adding microbial phytase.

A Study on Industries's Leading at the Stock Market in Korea - Gradual Diffusion of Information and Cross-Asset Return Predictability- (산업의 주식시장 선행성에 관한 실증분석 - 자산간 수익률 예측 가능성 -)

  • Kim Jong-Kwon
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2004.11a
    • /
    • pp.355-380
    • /
    • 2004
  • I test the hypothesis that the gradual diffusion of information across asset markets leads to cross-asset return predictability in Korea. Using thirty-six industry portfolios and the broad market index as our test assets, I establish several key results. First, a number of industries such as semiconductor, electronics, metal, and petroleum lead the stock market by up to one month. In contrast, the market, which is widely followed, only leads a few industries. Importantly, an industry's ability to lead the market is correlated with its propensity to forecast various indicators of economic activity such as industrial production growth. Consistent with our hypothesis, these findings indicate that the market reacts with a delay to information in industry returns about its fundamentals because information diffuses only gradually across asset markets. Traditional theories of asset pricing assume that investors have unlimited information-processing capacity. However, this assumption does not hold for many traders, even the most sophisticated ones. Many economists recognize that investors are better characterized as being only boundedly rational(see Shiller(2000), Sims(2201)). Even from casual observation, few traders can pay attention to all sources of information much less understand their impact on the prices of assets that they trade. Indeed, a large literature in psychology documents the extent to which even attention is a precious cognitive resource(see, eg., Kahneman(1973), Nisbett and Ross(1980), Fiske and Taylor(1991)). A number of papers have explored the implications of limited information- processing capacity for asset prices. I will review this literature in Section II. For instance, Merton(1987) develops a static model of multiple stocks in which investors only have information about a limited number of stocks and only trade those that they have information about. Related models of limited market participation include brennan(1975) and Allen and Gale(1994). As a result, stocks that are less recognized by investors have a smaller investor base(neglected stocks) and trade at a greater discount because of limited risk sharing. More recently, Hong and Stein(1999) develop a dynamic model of a single asset in which information gradually diffuses across the investment public and investors are unable to perform the rational expectations trick of extracting information from prices. Hong and Stein(1999). My hypothesis is that the gradual diffusion of information across asset markets leads to cross-asset return predictability. This hypothesis relies on two key assumptions. The first is that valuable information that originates in one asset reaches investors in other markets only with a lag, i.e. news travels slowly across markets. The second assumption is that because of limited information-processing capacity, many (though not necessarily all) investors may not pay attention or be able to extract the information from the asset prices of markets that they do not participate in. These two assumptions taken together leads to cross-asset return predictability. My hypothesis would appear to be a very plausible one for a few reasons. To begin with, as pointed out by Merton(1987) and the subsequent literature on segmented markets and limited market participation, few investors trade all assets. Put another way, limited participation is a pervasive feature of financial markets. Indeed, even among equity money managers, there is specialization along industries such as sector or market timing funds. Some reasons for this limited market participation include tax, regulatory or liquidity constraints. More plausibly, investors have to specialize because they have their hands full trying to understand the markets that they do participate in

  • PDF

Derivation of Digital Music's Ranking Change Through Time Series Clustering (시계열 군집분석을 통한 디지털 음원의 순위 변화 패턴 분류)

  • Yoo, In-Jin;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.3
    • /
    • pp.171-191
    • /
    • 2020
  • This study focused on digital music, which is the most valuable cultural asset in the modern society and occupies a particularly important position in the flow of the Korean Wave. Digital music was collected based on the "Gaon Chart," a well-established music chart in Korea. Through this, the changes in the ranking of the music that entered the chart for 73 weeks were collected. Afterwards, patterns with similar characteristics were derived through time series cluster analysis. Then, a descriptive analysis was performed on the notable features of each pattern. The research process suggested by this study is as follows. First, in the data collection process, time series data was collected to check the ranking change of digital music. Subsequently, in the data processing stage, the collected data was matched with the rankings over time, and the music title and artist name were processed. Each analysis is then sequentially performed in two stages consisting of exploratory analysis and explanatory analysis. First, the data collection period was limited to the period before 'the music bulk buying phenomenon', a reliability issue related to music ranking in Korea. Specifically, it is 73 weeks starting from December 31, 2017 to January 06, 2018 as the first week, and from May 19, 2019 to May 25, 2019. And the analysis targets were limited to digital music released in Korea. In particular, digital music was collected based on the "Gaon Chart", a well-known music chart in Korea. Unlike private music charts that are being serviced in Korea, Gaon Charts are charts approved by government agencies and have basic reliability. Therefore, it can be considered that it has more public confidence than the ranking information provided by other services. The contents of the collected data are as follows. Data on the period and ranking, the name of the music, the name of the artist, the name of the album, the Gaon index, the production company, and the distribution company were collected for the music that entered the top 100 on the music chart within the collection period. Through data collection, 7,300 music, which were included in the top 100 on the music chart, were identified for a total of 73 weeks. On the other hand, in the case of digital music, since the cases included in the music chart for more than two weeks are frequent, the duplication of music is removed through the pre-processing process. For duplicate music, the number and location of the duplicated music were checked through the duplicate check function, and then deleted to form data for analysis. Through this, a list of 742 unique music for analysis among the 7,300-music data in advance was secured. A total of 742 songs were secured through previous data collection and pre-processing. In addition, a total of 16 patterns were derived through time series cluster analysis on the ranking change. Based on the patterns derived after that, two representative patterns were identified: 'Steady Seller' and 'One-Hit Wonder'. Furthermore, the two patterns were subdivided into five patterns in consideration of the survival period of the music and the music ranking. The important characteristics of each pattern are as follows. First, the artist's superstar effect and bandwagon effect were strong in the one-hit wonder-type pattern. Therefore, when consumers choose a digital music, they are strongly influenced by the superstar effect and the bandwagon effect. Second, through the Steady Seller pattern, we confirmed the music that have been chosen by consumers for a very long time. In addition, we checked the patterns of the most selected music through consumer needs. Contrary to popular belief, the steady seller: mid-term pattern, not the one-hit wonder pattern, received the most choices from consumers. Particularly noteworthy is that the 'Climbing the Chart' phenomenon, which is contrary to the existing pattern, was confirmed through the steady-seller pattern. This study focuses on the change in the ranking of music over time, a field that has been relatively alienated centering on digital music. In addition, a new approach to music research was attempted by subdividing the pattern of ranking change rather than predicting the success and ranking of music.

A Thermal Time-Driven Dormancy Index as a Complementary Criterion for Grape Vine Freeze Risk Evaluation (포도 동해위험 판정기준으로서 온도시간 기반의 휴면심도 이용)

  • Kwon, Eun-Young;Jung, Jea-Eun;Chung, U-Ran;Lee, Seung-Jong;Song, Gi-Cheol;Choi, Dong-Geun;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.8 no.1
    • /
    • pp.1-9
    • /
    • 2006
  • Regardless of the recent observed warmer winters in Korea, more freeze injuries and associated economic losses are reported in fruit industry than ever before. Existing freeze-frost forecasting systems employ only daily minimum temperature for judging the potential damage on dormant flowering buds but cannot accommodate potential biological responses such as short-term acclimation of plants to severe weather episodes as well as annual variation in climate. We introduce 'dormancy depth', in addition to daily minimum temperature, as a complementary criterion for judging the potential damage of freezing temperatures on dormant flowering buds of grape vines. Dormancy depth can be estimated by a phonology model driven by daily maximum and minimum temperature and is expected to make a reasonable proxy for physiological tolerance of buds to low temperature. Dormancy depth at a selected site was estimated for a climatological normal year by this model, and we found a close similarity in time course change pattern between the estimated dormancy depth and the known cold tolerance of fruit trees. Inter-annual and spatial variation in dormancy depth were identified by this method, showing the feasibility of using dormancy depth as a proxy indicator for tolerance to low temperature during the winter season. The model was applied to 10 vineyards which were recently damaged by a cold spell, and a temperature-dormancy depth-freeze injury relationship was formulated into an exponential-saturation model which can be used for judging freeze risk under a given set of temperature and dormancy depth. Based on this model and the expected lowest temperature with a 10-year recurrence interval, a freeze risk probability map was produced for Hwaseong County, Korea. The results seemed to explain why the vineyards in the warmer part of Hwaseong County have been hit by more freeBe damage than those in the cooler part of the county. A dormancy depth-minimum temperature dual engine freeze warning system was designed for vineyards in major production counties in Korea by combining the site-specific dormancy depth and minimum temperature forecasts with the freeze risk model. In this system, daily accumulation of thermal time since last fall leads to the dormancy state (depth) for today. The regional minimum temperature forecast for tomorrow by the Korea Meteorological Administration is converted to the site specific forecast at a 30m resolution. These data are input to the freeze risk model and the percent damage probability is calculated for each grid cell and mapped for the entire county. Similar approaches may be used to develop freeze warning systems for other deciduous fruit trees.

Construction and Application of Intelligent Decision Support System through Defense Ontology - Application example of Air Force Logistics Situation Management System (국방 온톨로지를 통한 지능형 의사결정지원시스템 구축 및 활용 - 공군 군수상황관리체계 적용 사례)

  • Jo, Wongi;Kim, Hak-Jin
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.2
    • /
    • pp.77-97
    • /
    • 2019
  • The large amount of data that emerges from the initial connection environment of the Fourth Industrial Revolution is a major factor that distinguishes the Fourth Industrial Revolution from the existing production environment. This environment has two-sided features that allow it to produce data while using it. And the data produced so produces another value. Due to the massive scale of data, future information systems need to process more data in terms of quantities than existing information systems. In addition, in terms of quality, only a large amount of data, Ability is required. In a small-scale information system, it is possible for a person to accurately understand the system and obtain the necessary information, but in a variety of complex systems where it is difficult to understand the system accurately, it becomes increasingly difficult to acquire the desired information. In other words, more accurate processing of large amounts of data has become a basic condition for future information systems. This problem related to the efficient performance of the information system can be solved by building a semantic web which enables various information processing by expressing the collected data as an ontology that can be understood by not only people but also computers. For example, as in most other organizations, IT has been introduced in the military, and most of the work has been done through information systems. Currently, most of the work is done through information systems. As existing systems contain increasingly large amounts of data, efforts are needed to make the system easier to use through its data utilization. An ontology-based system has a large data semantic network through connection with other systems, and has a wide range of databases that can be utilized, and has the advantage of searching more precisely and quickly through relationships between predefined concepts. In this paper, we propose a defense ontology as a method for effective data management and decision support. In order to judge the applicability and effectiveness of the actual system, we reconstructed the existing air force munitions situation management system as an ontology based system. It is a system constructed to strengthen management and control of logistics situation of commanders and practitioners by providing real - time information on maintenance and distribution situation as it becomes difficult to use complicated logistics information system with large amount of data. Although it is a method to take pre-specified necessary information from the existing logistics system and display it as a web page, it is also difficult to confirm this system except for a few specified items in advance, and it is also time-consuming to extend the additional function if necessary And it is a system composed of category type without search function. Therefore, it has a disadvantage that it can be easily utilized only when the system is well known as in the existing system. The ontology-based logistics situation management system is designed to provide the intuitive visualization of the complex information of the existing logistics information system through the ontology. In order to construct the logistics situation management system through the ontology, And the useful functions such as performance - based logistics support contract management and component dictionary are further identified and included in the ontology. In order to confirm whether the constructed ontology can be used for decision support, it is necessary to implement a meaningful analysis function such as calculation of the utilization rate of the aircraft, inquiry about performance-based military contract. Especially, in contrast to building ontology database in ontology study in the past, in this study, time series data which change value according to time such as the state of aircraft by date are constructed by ontology, and through the constructed ontology, It is confirmed that it is possible to calculate the utilization rate based on various criteria as well as the computable utilization rate. In addition, the data related to performance-based logistics contracts introduced as a new maintenance method of aircraft and other munitions can be inquired into various contents, and it is easy to calculate performance indexes used in performance-based logistics contract through reasoning and functions. Of course, we propose a new performance index that complements the limitations of the currently applied performance indicators, and calculate it through the ontology, confirming the possibility of using the constructed ontology. Finally, it is possible to calculate the failure rate or reliability of each component, including MTBF data of the selected fault-tolerant item based on the actual part consumption performance. The reliability of the mission and the reliability of the system are calculated. In order to confirm the usability of the constructed ontology-based logistics situation management system, the proposed system through the Technology Acceptance Model (TAM), which is a representative model for measuring the acceptability of the technology, is more useful and convenient than the existing system.