• Title/Summary/Keyword: Production index

Search Result 1,698, Processing Time 0.037 seconds

A Study on Air Resistance and Greenhouse Gas Emissions of an Ocean Leisure Planning Boat (해양레저용 활주형선의 공기저항 및 온실 가스 배출에 대한 연구)

  • Kim, Y.S.;Hwang, S.K.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.3
    • /
    • pp.202-210
    • /
    • 2013
  • As incomes increase, interest in ocean leisure picks up. As a result, a lot of research and developments on hull form design and production of planing boats, mostly used for ocean leisure, are needed. Analysis in researches on resistance of planing boats shows that resistance characteristic of planing boats is different from resistance characteristic of general boats because the former is fast, and its wetted surface is very small. Using Savitsky formula widely used in the calculation of effective horse power in shipbuildingyards, and propulsion system and engine manufacturers, this study calculated total resistance of a research planing boat. Then it analyzed the flow characteristics of the planing boat through theoretical analysis and wind tunnel experiment, and computed air resistance and lift force by changes of speed and trim angle. It also compared and analyzed result of theoretical analysis and experiment of the ratio of air resistance to total resistance under variations of velocity and trim angle. When the study is used to estimate more accurate effective horse power, it is expected to remedy abuses of unnecessarily installing high-powered engine. As nature disasters due to abnormal changes of weather increase, interest in greenhouse gas grows. International Maritime Organization (IMO) legislated Energy Efficiency Design Index (EEDI) and Energy Efficiency Operational Indicator (EEOI) to reduce ship greenhouse gas emissions. But this index will be applied to over 400 tons ships, small ships, emitting more greenhouse gases than larege ships per unit power, will dodge the regulations. Thus, this study indicated a problem by calculating greenhouse gas emissions of an ocean leisure planning boat (a small ship), and suggested the need for EEDI of small ships.

The Growth of Tomato Transplants Influenced by the Air Temperature during Transportation (운송시 온도 조건에 따른 토마토묘의 정식 후 생육)

  • Jang, Yoonah;Mun, Boheum;Jeong, Sun Jin;Choi, Jang-Jeon;Park, Dong Kum
    • Journal of Bio-Environment Control
    • /
    • v.24 no.4
    • /
    • pp.301-307
    • /
    • 2015
  • High quality transplants are critical for success in crop production. Increasing numbers of growers purchase their transplants from specialized transplant producers instead of growing their own transplants. A drawback of purchasing transplants is the risk of deterioration to transplants during transportation from transplant producers to the growers. This study evaluates the influence of temperature on the quality of grafted tomatoes transplants (Solanum lycopersicum cv. Super Doterang), in order to propose optimum temperature condition for the transportation of grafted tomato transplants. Grafted tomato transplants with visible flower trusses were exposed to different air temperature ($10^{\circ}C$, $25^{\circ}C$, or $40^{\circ}C$) for 2, 4, or 6 hours. After treatment, the NDVI (Normalized Difference Vegetation Index) values of tomato transplants treated at 25 and $40^{\circ}C$ were lower than that at $10^{\circ}C$. The root fresh weight was lowest at $40^{\circ}C$. After transplanting, the transplants that were exposed to the air temperature of $40^{\circ}C$ exhibited chlorosis and blight on lower leaves. The degree of damage on leaves was severer as the high temperature exposure time was longer. The temperature conditions during the transportation also influenced the growth, flowering and fruit set of tomatoes after transplanting. The fruit number and weight of first truss was lowest at $40^{\circ}C$ for 6 hours. Accordingly, it is recommended that the temperature during the transportation should be controlled and kept at the range from 10 to $25^{\circ}C$ even though the period is short (within as six hours) in order to maintain the quality of transplants.

Analysis of Sinjido Marine Ecosystem in 1994 using a Trophic Flow Model (영양흐름모형을 이용한 1994년 신지도 해양생태계 해석)

  • Kang, Yun-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.16 no.4
    • /
    • pp.180-195
    • /
    • 2011
  • A balanced trophic model for Sinjido marine ecosystem was constructed using ECOPATH model and data obtained 1994 in the region. The model integrates available information on biomass and food spectrum, and analyses ecosystem properties, dynamics of the main species populations and the key trophic pathways of the system, and then compares these results with those of other marine environments. The model comprises 17 groups of benthic algae, phytoplankton, zooplankton, gastropoda, polychaeta, bivalvia, echinodermata, crustacean, cephalopoda, goby, flatfish, rays and skates, croaker, blenny, conger, flatheads, and detritus. The model shows trophic levels of 1.0~4.0 from primary producers and detritus to top predator as flathead group. The model estimates total biomass(B) of 0.1 $kgWW/m^2$, total net primary production(PP) of 1.6 $kgWW/m^2/yr$, total system throughput(TST) of 3.4 $kgWW/m^2/yr$ and TST's components of consumption 7%, exports 43%, respiratory flows 4% and flows into detritus 46%. The model also calculates PP/TR of 0.012, PP/B of 0.015, omnivory index(OI) of 0.12, Fin's cycling index(FCI) of 0.7%, Fin's mean path length(MPL) of2.11, ascendancy(A) of 4.1 $kgWW/m^2/yr$ bits, development capacity(C) of 8.2 $kgWW/m^2/yr$ bits and A/C of 51%. In particular this study focuses the analysis of mixed trophic impacts and describes the indirect impact of a groupb upon another through mediating one based on 4 types. A large proportion of total export in TST means higher exchange rate in the study region than in semi enclosed basins, which seems by strong tidal currents along the channels between islands, called Sinjido, Choyakdo and Saengildo. Among ecosystem theory and cycling indices, B, TST, PP/TR, FCI, MPL and OI are shown low, indicating the system is not fully mature according to Odum's theory. Additionally, high A/C reveals the maximum capacity of the region is small. To sum up, the study region has high exports of trophic flow and low capacity to develop, and reaches a development stage in the moment. This is a pilot research applied to the Sinjido in terms of trophic flow and food web system such that it may be helpful for comparison and management of the ecosystem in the future.

Response to Specific Fertilizer on Chestnut Tree (II) -Deficiency of Insolation and Effect of the Compound Fertilizer with MgO Component- (밤나무 시비시험(施肥試驗)(II) -일조량부족(日照量不足)과 MgO의 시비효과(施肥効果)-)

  • Chung, In Koo;Kang, Sin Woo;Lee, Meong Sun
    • Journal of Korean Society of Forest Science
    • /
    • v.58 no.1
    • /
    • pp.17-22
    • /
    • 1982
  • During the two-years(1979 to 1980) fertilization trial on 4-year-old chestnut tree plantations, total insolation was diminished in 1980 because of unseasonable weather. In every fertilization treatment plot, especially in the NPK-fertilized plot with magnesium, growth of trees and yield of chestnuts have been increased significantly. The results obtained are as follows: 1) The growth in the NPK-fertilized plot with boron and magnesium was 20 percent higher than in plots fertilized with NPK alone. 2) Although there was some frost damage to trees on November 14, 1979, the 1979 weather was otherwise normal and daily insolation averaged 7 hours from June through september, The 1979 fertilization indices for chesnut yield were 167 for NPK with boron and 207 for NPK with magnesium, as compared with the base index of 100 for NPK alone. 3) In 1980, the second year of the fertilization trial, unseasonable weather decreased the average daily insolation from June through September to 3.8 hours. Under such conditions, the fertilization indices for chestnut yield were 620 for NPK with boron and 741 for NPK with magnesium, and Boron, as compared to the base index of 100 for NPK alone; i.e. the yields of plots treated with NPK and magnesium were 21 percent higher than for plots with NPK and boron and 7 times the yields for plots with NPK alone, But in the trial plot of NPK, yield of chestnut in 1980 decreased compared with 1979, 4) All test plots had natural magnesium levels lower than 0.8me/100gr., and the treatments with NPK and magnesium would have been less apparent on soils with higher magnesium level. The spectacular effects of treatment with NPK and magnesium during periods of low insolation may result from increased chlorophyll production and corresponding increases in active carbon assimilation, which should play an important role in carbohydrate formation.

  • PDF

Agroclimatic Zone and Characters of the Area Subject to Climatic Disaster in Korea (농업 기후 지대 구분과 기상 재해 특성)

  • 최돈향;윤성호
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.34 no.s02
    • /
    • pp.13-33
    • /
    • 1989
  • Agroclimate should be analyzed and evaluated accurately to make better use of available chimatic resources for the establishment of optimum cropping systems. Introducing of appropriate cultivars and their cultivation techniques into classified agroclimatic zone could contribute to the stability and costs of crop production. To classify the agroclimatic zones, such climatic factors as temperature, precipitation, sunshine, humidity and wind were considered as major influencing factors on the crop growth and yield. For the classification of rice agroclimatic zones, precipitation and drought index during transplanting time, the first occurrence of effective growth temperature (above 15$^{\circ}C$) and its duration, the probability of low temperature occurrence, variation in temperature and sunshine hours, and climatic productivity index were used in the analysis. The agroclimatic zones for rice crop were classified into 19 zones as follows; (1) Taebaek Alpine Zone, (2) Taebaek Semi-Alpine Zone, (3) Sobaek Mountainous Zone, (4) Noryeong Sobaek Mountainous Zone, (5) Yeongnam Inland Mountainous Zone, (6) Northern Central Inland Zone, (7) Central Inland Zone, (8) Western Soebaek Inland Zone, (9) Noryeong Eastern and Western Inland Zone, (10) Honam Inland Zone, (ll) Yeongnam Basin Zone, (12) Yeongnam Inland Zone, (13) Western Central Plain Zone, (14) Southern Charyeong Plain Zone, (15) South Western Coastal Zone, (16) Southern Coastal Zone, (17) Northern Eastern Coastal Zone, (18) Central Eastern Coastal Zone, and (19) South Eastern Coastal Zone. The classification of agroclimatic zones for cropping systems was based on the rice agroclimatic zones considering zonal climatic factors for both summer and winter crops and traditional cropping systems. The agroclimatic zones were identified for cropping systems as follows: (I) Alpine Zone, (II) Mountainous Zone, (III) Central Northern Inland Zone, (IV) Central Northern West Coastal Zone, (V) Cental Southern West Coastal Zone, (VI) Gyeongbuk Inland Zone, (VII) Southern Inland Zone, (VIII) Southern Coastal Zone, and (IX) Eastern Coastal Zone. The agroclimatic zonal characteristics of climatic disasters under rice cultivation were identified: as frequent drought zones of (11) Yeongnam Basin Zone, (17) North Eastern Coastal Zone with the frequency of low temperature occurrence below 13$^{\circ}C$ at root setting stage above 9.1%, and (2) Taebaek Semi-Alpine Zone with cold injury during reproductive stages, as the thphoon and intensive precipitation zones of (10) Hanam Inland Zone, (15) Southern West Coastal Zone, (16) Southern Coastal Zone with more than 4 times of damage in a year and with typhoon path and heavy precipitation intensity concerned. Especially the three east coastal zones, (17), (18), and (19), were subjected to wind and flood damages 2 to 3 times a year as well as subjected to drought and cold temperature injury.

  • PDF

Evaluation of Odors and Odorous Compounds from Liquid Animal Manure Treated with Different Methods and Their Application to Soils (액상 가축분뇨의 처리 및 토양환원에 따른 악취 및 악취물질의 평가)

  • 고한종;최홍림;김기연;이용기;김치년
    • Journal of Animal Science and Technology
    • /
    • v.48 no.3
    • /
    • pp.453-466
    • /
    • 2006
  • To comply with stricter regulations provoked by increasing odor nuisance, it is imperative to practice effective odor control for sustainable livestock production. This study was conducted to assess odor and odorous compounds emitted from liquid animal manure with different treatment methods such as Fresh Manure(without treatment, FM), Anaerobic Digestion(AD) and Thermophilic Aerobic Digestion(TAD) and their application to soil. Air samples were collected at the headspace of liquid manure, upland and paddy soil, and analyzed for odor intensity and offensiveness using an olfactometry; odor concentration index using odor analyser; nitrogen-containing compound such as ammonia(NH3) using fluorescence method; and sulfur containing compounds such as hydrogen sulfide(H2S), methyl mercaptan(MeSH), dimethyl sulfide(DMS) and dimethyl disulfide(DMDS) using gas chromatography-pulsed flame photometric detector, respectively. Odor intensity, offensiveness and concentration index from TAD liquid manure was statistically lower than those from FM and AD(p<0.01). Mean concentrations of H2S, MeSH, DMS, DMDS and NH3 were 65.93ppb, 18.55ppb, 5.26ppb, 0.33ppb and 10.57ppm for liquid manure with AD; and 5.15ppb, 0.97ppb, 0.80ppb, 0.56ppb and 1.34ppm for liquid manure with TAD, respectively. More than 60% of malodorous compounds related to nitrogen and sulfur were removed by heterotrophic microorganisms during TAD treatment. When liquid manure was applied onto upland and paddy soil, NH3 removal efficiencies ranged from 51 to 94% and 22 to 91% for AD and TAD liquid manure, respectively. The above results show that liquid manure with TAD is superior to AD and FM with respect to the odor reduction and odor problem caused by land applied liquid manure is directly related to the degree of odor generated by the manure treatment method.

Change of the Vegetation Due to Soyanggang Dam Construction (소양강댐 건설에 따른 주변 식생의 변화)

  • Choi, Ho;Park, Pil-Sun;Kim, Jae-Geun;Suh, Sim-Eun
    • Journal of Wetlands Research
    • /
    • v.12 no.3
    • /
    • pp.1-13
    • /
    • 2010
  • Most of investigations about the effects of dam construction on the surrounding environments have focused mainly on the change of climate conditions and crop production. In order to research the effect of dam construction on the surrounding vegetation, we chose the Soyanggang dam whose storage capacity is the largest in Korea, and was built 33 years ago. We surveyed and analyzed the surrounding vegetation by using quadrat method and measured the soil moisture content among floodplain (FP), 5m above the flood plain (AFP) and control group (CG) which is 3km far from the lake through ridge. The largest value of mean importance percentage of the canopy~understory layer at FP was Salix koreensis (87.9%) and those of AFP and CG was Quercus mongolica (38.9% and 40.4% respectively) and the largest important percentage of the herb layer at FP was Artemisia capillaris (34.2%) and those of AFP and CG was Oplismenus undulatifolius var. undulatifolius (9.4% and 24.6% respectively). The Shannon-Wiener diversity index of shrub~canopy layer at FP (0.26) was lower than AFP (2.34) and CG (2.23) and there was not any significant difference in the herb layer among three groups. The S${\o}$rensen similarity index between FP and AFP, FP and CG was 0, and that of AFP and CG was relatively high. The highest density of tree and subtree with the DBH level of FP was S. koreensis of 5~10cm (240/ha), and that of AFP and CG was Quercus spp. of 15~20cm (400/ha and 466/ha respectively). And the highest density of seedlings of FP was Pinus densiflora (7,040/ha), and that of AFP and CG was Quercus spp. (720/ha and 400/ha respectively). The soil water content of FP (6.28%) was relatively lower than AFP and CG (11.13% and 10.14% respectively; p<.01). These results indicated that construction of Soyanggang dam changed the vegetation of the floodplain, without showing a change in its upland areas.

Effect of Salinity Stress on Growth, Yield, and Proline Accumulation of Cultivated Potatoes (Solanum tuberosum L.) (염 스트레스에 따른 감자 품종 (Solanum tuberosum L.) 간 생육, 수량 및 proline 함량 변이)

  • Im, Ju Sung;Cho, Ji Hong;Cho, Kwang Soo;Chang, Dong Chil;Jin, Yong Ik;Yu, Hong Seob;Kim, Wha Yeong
    • Horticultural Science & Technology
    • /
    • v.34 no.6
    • /
    • pp.818-829
    • /
    • 2016
  • This study evaluated the responses of 18 potato cultivars to three levels of salinity stress (electrical conductivity, EC: 1.0, 4.0, and $8.0dS{\cdot}m^{-1}$). Stem, leaf, root, chlorophyll, tuber yield, and proline content were investigated and statistically analyzed using analysis of variance (ANOVA) and correlations. Stem number and stem diameter were not affected by salinity, but stem length and aerial weight showed highly significant responses to salinity. Aerial weight decreased with increasing salinity levels in most cultivars, while it increased in some the cultivars 'Daejima', 'Goun', 'Haryeong', and 'LT-8'. Leaf number, leaf area index, and leaf weight were most significantly affected by salinity and the cultivar ${\times}$ salinity interaction. Root length, root weight, total chlorophyll and chlorophyll a were affected by salinity, but not by the cultivar ${\times}$ salinity interaction. The opposite trend was shown in chlorophyll b. Although there was great variability among cultivars, tuber yield decreased in all cultivars, and was most significantly influenced by salinity and the cultivar ${\times}$ salinity interaction. 'Superior', 'Kroda', 'Romana', and 'Duback' gave better tuber yields under salinity at EC 4.0 and $8.0dS{\cdot}m^{-1}$ than the cultivars with better aerial weights. Proline content was increased by salinity in all cultivars, and was more remarkable in the cultivars with better aerial weights than in cultivars such as 'Superior' and 'Kroda' with better tuber yields. Leaf number, leaf area index, leaf weight, and root length parameters were considered to be useful criteria in the evaluation of salt tolerance because of their high positive correlation with tuber yield; however, given its negative correlation with tuber yield under high salinity, proline content was not. Salinity tolerances varied greatly among potato cultivars. The low correlation between growth and yields of aerial parts under high salinity suggests that, in commercial agriculture, it might be more practical to compare relative yields to controls. Additionally, 'Superior', 'Kroda', 'Romana', and 'Duback' might be very useful cultivars to use in breeding programs to develop salinity-tolerant potatoes, as well as for sustainable potato production in saline areas.

Estimation of Fresh Weight, Dry Weight, and Leaf Area Index of Soybean Plant using Multispectral Camera Mounted on Rotor-wing UAV (회전익 무인기에 탑재된 다중분광 센서를 이용한 콩의 생체중, 건물중, 엽면적 지수 추정)

  • Jang, Si-Hyeong;Ryu, Chan-Seok;Kang, Ye-Seong;Jun, Sae-Rom;Park, Jun-Woo;Song, Hye-Young;Kang, Kyeong-Suk;Kang, Dong-Woo;Zou, Kunyan;Jun, Tae-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.4
    • /
    • pp.327-336
    • /
    • 2019
  • Soybean is one of the most important crops of which the grains contain high protein content and has been consumed in various forms of food. Soybean plants are generally cultivated on the field and their yield and quality are strongly affected by climate change. Recently, the abnormal climate conditions, including heat wave and heavy rainfall, frequently occurs which would increase the risk of the farm management. The real-time assessment techniques for quality and growth of soybean would reduce the losses of the crop in terms of quantity and quality. The objective of this work was to develop a simple model to estimate the growth of soybean plant using a multispectral sensor mounted on a rotor-wing unmanned aerial vehicle(UAV). The soybean growth model was developed by using simple linear regression analysis with three phenotypic data (fresh weight, dry weight, leaf area index) and two types of vegetation indices (VIs). It was found that the accuracy and precision of LAI model using GNDVI (R2= 0.789, RMSE=0.73 ㎡/㎡, RE=34.91%) was greater than those of the model using NDVI (R2= 0.587, RMSE=1.01 ㎡/㎡, RE=48.98%). The accuracy and precision based on the simple ratio indices were better than those based on the normalized vegetation indices, such as RRVI (R2= 0.760, RMSE=0.78 ㎡/㎡, RE=37.26%) and GRVI (R2= 0.828, RMSE=0.66 ㎡/㎡, RE=31.59%). The outcome of this study could aid the production of soybeans with high and uniform quality when a variable rate fertilization system is introduced to cope with the adverse climate conditions.

Germination of Yam Bean Seeds as Affected by Temperature and Its Productivity with Different Seeding Dates (얌빈의 온도별 발아특성과 파종시기에 따른 생산성 비교)

  • Uhm, Mi Jeong;Kim, Chi Seon;Kim, Eun Ji;Jung, Hyun Soo;Kim, Jeong Man
    • Journal of Bio-Environment Control
    • /
    • v.27 no.3
    • /
    • pp.245-252
    • /
    • 2018
  • Yam bean (Pachyrhizus erosus) is a subtropical plant belonging to the Fabaceae family, and is a tuberous vegetable used as various food material with a crisp and juicy taste. This study was conducted to seek optimum sowing time of yam bean in Korea. For this, we surveyed germination properties by the different temperatures and compared the accumulation temperature (AT) and dry matter production (DMP) on growth stages of yam bean by the different sowing times. Two types of varieties cultivated mainly in Korea, Thailand local variety (TLV) and Cheongunmanma cultivar (CGMM), was used. The germination rate of yam bean was 86.0~94.0% at above $18^{\circ}C$, and germination days was longer at lower temperature. The times for flowering and tuber formation of CGMM were later than those of TLV, and the AT required for flowering, tuber formation and hypertrophy of CGMM were higher than those of TLV by $293^{\circ}C$, $280^{\circ}C$ and $108^{\circ}C$, respectively. Also, DMP of shoot and tuber in CGMM were greater than those in TLV. In sowing at April 25, tuber formation was slower than sowing after that time, and harvest index (HI) was relatively low due to delayed formation and hypertrophy of tuber. In sowing after June 9, DMP of shoot was relatively greater in early growth, but tuber was not sufficient to enlarge due to lack of growth days by cold and frost in late October. In sowing May 10 and 25, DMP of tuber and HI were the highest, because the change of day length and temperature gave an advantage to vegetable growth and tuber development. All above suggest that it was suitable to sow seeds on May for increment of tuber productivity in Korea.