• Title/Summary/Keyword: Production Traits

Search Result 1,283, Processing Time 0.029 seconds

Adaptability of the high first pod height, shattering-resistant soybean cultivar 'Saegeum' to mechanized harvesting (고착협 내탈립 기계수확 적응 장류·두부용 콩 품종 '새금')

  • Kim, Hyun Tae;Han, Won Young;Lee, Byung Won;Ko, Jong Min;Lee, Yeong Hoon;Baek, In Youl;Yun, Hong Tai;Ha, Tae Joung;Choi, Man Soo;Kang, Beom Kyu;Kim, Hyun Yeong;Seo, Jeong Hyun;Kim, Hong Sik;Shin, Sang Ouk;Oh, Jae Hyun;Kwak, Do Yeon;Seo, Min Jeong;Song, Yoon Ho;Jang, Eun Kyu;Yun, Geon Sik;Kang, Yeong Sik;Lee, Ji Yun;Shin, Jeong Ho;Choi, Kyu Hwan;Kim, Dong Kwan;Yang, Woo Sam
    • Korean Journal of Breeding Science
    • /
    • v.51 no.4
    • /
    • pp.496-503
    • /
    • 2019
  • The soybean cultivar, 'Saegeum', has been developed for preparing soy-paste and tofu. The soybean cultivars 'Daepung' and 'SS98207-3SSD-168' were crossed in 2003 to obtain 'Saegeum'. Single seed descent method was used to advance the generation from F3 to F5, and the plant lines with promising traits were selected from F6 to F7 by pedigree method. The preliminary yield (PYT) and advanced yield trials (AYT) were conducted from 2009 to 2010, and the regional yield trial (RYT) was conducted in 12 regions between 2011 and 2013. The morphological characteristics of 'Saegeum' were as follows: determinate plant type, white flower, tawny pubescence color, and brown pod color. Flowering and maturity dates were August 2, XXXX and October 17, XXXX, respectively. Plant height, first pod height, number of nodes, number of branches, and number of pods were 79 cm, 18 cm, 16, 2.3, and 44, respectively. The seed characteristics of 'Saegeum' were as follows: yellow spherical shape, yellow hilum, and the 100-seed weight was 25.4 g. 'Saegeum' was resistant to bacterial pustule and SMV in the field test, and its lodging resistance was mildly strong, whereas its shattering resistance was excellent. The ability of this cultivar to be processed into tofu, soybean malt, and other fermented products was comparable with that of 'Daewonkong'. The yield of 'Saegeum' in the adaptable regions was 3.02 ton ha-1. Thus, 'Saegeum' is adaptable to mechanized harvesting because of its high first pod height, as well as lodging and shattering resistance. (Registration number: 5929)

Study on Reproductive and Pork Production Performance for Two-way and Three-way Crosses in Swine (이원교잡종(二元交雜種) 및 삼원교잡종(三元交雜種) 돼지의 산자(産仔) 및 산육능력(産肉能力)에 관(關)한 연구(硏究))

  • Park, Chang Sik;Lee, Kyu Seung
    • Korean Journal of Agricultural Science
    • /
    • v.8 no.1
    • /
    • pp.51-63
    • /
    • 1981
  • The results of a crossbreeding experiment with a total of 315 litters and 325 pigs of Berkshires, Hampshires, Durocs, Landraces, Large Whites, eight different two-breed crosses and twelve different three-breed crosses, produced at Livestock Experiment Station from 1975 through 1979, are summarized as follows. 1. Number born alive per litter was largest in the D♂${\times}$(Lw♂${\times}$L♀) $F_1$ ♀ mating, followed by the D♂${\times}$(H♂${\times}$L♀) $F_1$ mating, and smallest in the Hampshires. The pigs in the 3rd-6th parities had larger litter size at birth than those in other parities. 2. Birth weight of pig was heaviest in L♂${\times}$Lw♀ mating and lightest in the Large White. The total litter weight at birth was heaviest in the D♂${\times}$(Lw♂${\times}$L♀) $F_1$ ♀ mating, followed by D♂${\times}$(H♂${\times}$L♀) $F_1$ ♀ and Lw♂${\times}$L♀ matings, and was smaller in Hampshires and Birkshires. 3. Litter size at weaning was largest in the D♂${\times}$(Lw♂${\times}$L♀) $F_1$ ♀ mating, followed by D♂${\times}$(H♂${\times}$L♀) $F_1$ ♀ and Lw♂${\times}$L♀ matings, and was smaller in Durocs and Hampshires. The pigs in the 3rd-6th parities had larger litter size at weaning than those in other parities. 4. The total litter weight at weaning was heaviest in the D♂${\times}$(Lw♂${\times}$L♀) $F_1$ ♀ mating, followed by H♂${\times}$(Lw♂${\times}$L♀) $F_1$♀ and Lw♂${\times}$L♀ matings, and was lighter in Durocs and Hampshires. The weaning weight of pig was largest in D♂${\times}$(Lw♂${\times}$L♀) $F_1$ ♀ mating and lightest in L♂${\times}$H♀ mating. 5. Survival rate at weaning was highest in L♂${\times}$Lw♀ mating, followed by D♂${\times}$(L♂${\times}$H♀) $F_1$ ♀ and D♂${\times}$(H♂${\times}$L♀) $F_1$ ♀ mating, and was lowest in Durocs. 6. The three-breed cross from D♂${\times}$(H♂${\times}$L♀) $F_1$ ♀ mating had the highest average gain and lowest feed requirement per unit gain, followed by the D♂${\times}$(Lw♂${\times}$L♀) $F_1$ ♀ and H♂${\times}$(Lw♂${\times}$L♀) $F_1$ ♀ matings. The Birkshires and Landraces ranked lowest among the 25 mating groups compared for both of the traits. Males had higher average daily gain than females by about 0.06kg and had lower feed requirement by about 0.14. 7. The three-breed crosses from D♂${\times}$(H♂${\times}$L♀) $F_1$ ♀, D♂${\times}$(Lw♂${\times}$L♀) $F_1$ ♀ and H♂${\times}$(Lw♂${\times}$L♀) $F_1$ ♀ matings reached 90kg body weight at younger age than the other groups. The D♂${\times}$(H♂${\times}$L♀) $F_1$ ♀ group reached 90kg at younger age than the Landrace by 39 days. 8. The dressing percentage and lean meat percentage tended to be higher in H♂${\times}$(Lw♂${\times}$L♀) $F_1$ ♀, H♂${\times}$L♀ and L♂${\times}$B♀ matings compared to the other mating groups. The loin-eye area was largest in the Lw♂${\times}$L♀ mating and smallest in the B♂${\times}$L♀ mating. Males had higher dressing percentage, higher lean meat percentage and lion-eye area than females. The backfat was thinnest in purebred Hampshire and was thickest in B♂${\times}$L♀ mating. 9. The results obtained in this study suggest that the two-breed cross from Lw♂${\times}$L♀ mating, and the three-breed crosses from D♂${\times}$(Lw♂${\times}$L-♀) $F_1$ ♀ and D♂${\times}$(H♂${\times}$L♀) $F_1$♀ matings are superior crossbreds for reproductive and pork prodnction performance.

  • PDF

Studies on the Varietal Difference in the Physiology of Ripening in Rice with Special Reference to Raising the Percentage of Ripened Grains (수도 등숙의 품종간차이와 그 향상에 관한 연구)

  • Su-Bong Ahn
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.14
    • /
    • pp.1-40
    • /
    • 1973
  • There is a general tendency to increase nitrogen level in rice production to insure an increased yield. On the other hand, percentage of ripened grains is getting decreased with such an increased fertilizer level. Decreasing of the percentage is one of the important yield limiting factors. Especially the newly developed rice variety, 'Tongil' is characterized by a relatively low percentage of ripened grains as compared with the other leading varieties. Therefore, these studies were aimed to finding out of some measures for the improvement of ripening in rice. The studies had been carried out in the field and in the phytotron during the period of three years from 1970 to 1972 at the Crop Experiment Station in Suwon. The results obtained from the experiments could be summarized as follows: 1. The spikelet of Tongil was longer in length, more narrow in width, thinner in thickness, smaller in the volume of grains and lighter in grain weight than those of Jinheung. The specific gravity of grain was closely correlated with grain weight and the relationship with thickness, width and length was getting smaller in Jinheung. On the other hand, Tongil showed a different pattern from Jinheung. The relationship of the specific gravity with grain weight was the greatest and followed by that with the width, thickness and length, in order. 2. The distribution of grain weight selected by specific gravity was different from one variety to another. Most of grains of Jinheung were distributed over the specific gravity of 1.12 with its peak at 1.18, but many of grains of Tongil were distributed below 1.12 with its peak at 1.16. The brown/rough rice ratio was sharply declined below the specific gravity of 1.06 in Jinheung, but that of Tongil was not declined from the 1.20 to the 0.96. Accordingly, it seemed to be unfair to make the specific gravity criterion for ripened grains at 1.06 in the Tongil variety. 3. The increasing tendency of grain weight after flowering was different depending on varieties. Generally speaking, rice varieties originated from cold area showed a slow grain weight increase while Tongil was rapid except at lower temperature in late ripening stage. 4. In the late-tillered culms or weak culms, the number of spikelets was small and the percentage of ripened grains was low. Tongil produced more late-tillered culms and had a longer flowering duration especially at lower temperature, resulting in a lower percentage of ripened grains. 5. The leaf blade of Tongil was short, broad and errect, having light receiving status for photosynthesis was better. The photosynthetic activity of Tongil per unit leaf area was higher than that of Jinheung at higher temperature, but lower at lower temperature. 6. Tongil was highly resistant to lodging because of short culm length, and thick lower-internodes. Before flowering, Tongil had a relatively higher amount of sugars, phosphate, silicate, calcium, manganese and magnesium. 7. The number of spikelets of Tongil was much more than that of Jinheung. The negative correlation was observed between the number of spikelets and percentage of ripened grains in Jinheung, but no correlation was found in Tongil grown at higher temperature. Therefore, grain yield was increased with increased number of spikelets in Tongil. Anthesis was not occurred below 21$^{\circ}C$ in Tongil, so sterile spikelets were increased at lower temperature during flowering stage. 8. The root distribution of Jinheung was deeper than that of Tongil. The root activity of Tongil evaluated by $\alpha$-naphthylamine oxidation method, was higher than that of Jinheung at higher temperature, but lower at lower temperature. It is seemed to be related with discoloration of leaf blades. 9. Tongil had a better light receiving status for photosynthesis and a better productive structure with balance between photosynthesis and respiration, so it is seemed that tongil has more ideal plant type for getting of a higher grain yield as compared with Jinheung. 10. Solar radiation during the 10 days before to 30 days after flowering seemed enough for ripening in suwon, but the air temperature dropped down below 22$^{\circ}C$ beyond August 25. Therefore, it was believed that air temperature is one of ripening limiting factors in this case. 11. The optimum temperature for ripening in Jinheung was relatively lower than that of Tongil requriing more than $25^{\circ}C$. Air temperature below 21$^{\circ}C$ was one of limiting factors for ripening in Tongil. 12. It seemed that Jinheung has relatively high photosensitivity and moderate thermosensitivity, while Tongil has a low photosensitivity, high thermosensitivity and longer basic vegetative phase. 13. Under a condition of higher nitrogen application at late growing stage, the grain yield of Jinheung was increased with improvement of percentage of ripened grains, while grain yield of Tongil decreased due to decreasing the number of spikelets although photosynthetic activity after flowering was. increased. 14. The grain yield of Jinheung was decreased slightly in the late transplanting culture since its photosynthetic activity was relatively high at lower temperature, but that of Tonil was decreased due to its inactive photosynthetic activity at lower temperature. The highest yield of Tongil was obtained in the early transplanting culture. 15. Tongil was adapted to a higher fertilizer and dense transplanting, and the percentage of ripened grains was improved by shortening of the flowering duration with increased number of seedlings per hill. 16. The percentage of vigorous tillers was increased with a denser transplanting and increasing in number of seedlings per hill. 17. The possibility to improve percentage of ripened grains was shown with phosphate application at lower temperature. The above mentioned results are again summarized below. The Japonica type leading varieties should be flowered before August 20 to insure a satisfactory ripening of grains. Nitrogen applied should not be more than 7.5kg/10a as the basal-dressing and the remained nitrogen should be applied at the later growing stage to increase their photosynthetic activity. The morphological and physiological characteristics of Tongil, a semi-dwarf, Indica $\times$ Japonica hybrid variety, are very different from those of other leading rice varieties, requring changes in seed selection by specific gravity method, in milling and in the cultural practices. Considering the peculiar distribution of grains selected by the method and the brown/rough rice ratio, the specific gravity criterion for seed selection should be changed from the currently employed 1.06 to about 0.96 for Tongil. In milling process, it would be advisable to bear in mind the specific traits of Tongil grain appearance. Tongil is a variety with many weak tillers and under lower temperature condition flowering is delayed. Such characteristics result in inactivation of roots and leaf blades which affects substantially lowering of the percentage of ripened grains due to increased unfertilized spikelets. In addition, Tongil is adapted well to higher nitrogen application. Therefore, it would be recommended to transplant Tongil variety earlier in season under the condition of higer nitrogen, phosphate and silicate. A dense planting-space with three vigorous seedlings per hill should be practiced in this case. In order to manifest fully the capability of Tongil, several aspects such as the varietal improvement, culural practices and milling process should be more intensively considered in the future.he future.

  • PDF