• Title/Summary/Keyword: Production Line

Search Result 2,613, Processing Time 0.022 seconds

Lodging-Tolerant, High Yield, Mechanized-Harvest Adaptable and Small Seed Soybean Cultivar 'Aram' for Soy-sprout (내도복 다수성 기계수확 적응 소립 나물용 콩 '아람')

  • Kang, Beom Kyu;Kim, Hyun Tae;Ko, Jong Min;Yun, Hong Tai;Lee, Young Hoon;Seo, Jeong Hyun;Jung, Chan Sik;Shin, Sang Ouk;Oh, Eun Yeong;Kim, Hong Sik;Oh, In Seok;Baek, In Youl;Oh, Jae Hyun;Seo, Min Jeong;Yang, Woo Sam;Kim, Dong Kwan;Gwak, Do Yeon
    • Korean Journal of Breeding Science
    • /
    • v.51 no.3
    • /
    • pp.214-221
    • /
    • 2019
  • 'Aram' is a soybean cultivar developed for soy-sprout. It was developed from the crossing of 'Bosug' (Glycine max IT213209) and 'Camp' (G. max IT267356) cultivars in 2007. F1 plants and F2 population were developed in 2009 and 2010. A promising line was selected in the F5 generation in 2011 using the pedigree method and it was evaluated for agronomic traits, yield, and soy-sprouts characteristics in a preliminary yield trial (PYT) in 2012 and an advanced yield trial (AYT) in 2013. Agronomic traits and yield were stable between 2014 and 2016 in the regional yield trial (RYT) in four regions (Suwon, Naju, Dalseong, and Jeju). Morphological characteristics of 'Aram' are as follows: determinate plant type, purple flowers, grey pubescence, yellow pods, and small, yellow, and spherical seeds (9.9 g 100-seeds-1) with a light brown hilum. The flowering date was the 5th of August and the maturity date was the 15th of October. Plant height, first pod height, number of nods, number of branches, and number of pods were 65 cm, 13 cm, 16, 4.5, and 99, respectively. In the sprout test, germination rate and sprout characteristics of 'Aram' were comparable to that of the 'Pungsannamulkong' cultivar. The yield of 'Aram' was 3.59 ton ha-1 and it was 12% higher than that of 'Pungsannamulkong' in southern area of Korea. The yield of 'Aram' in the Jeju region, which is the main region for soybean sprout production, was 20% higher than that of 'Pungsannamulkong'. The height of the first pod and the tolerance to lodging and pod shattering, which are connected to the adaptation to mechanized harvesting, were higher in 'Aram' compared to those in 'Pungsannamulkong'. Therefore, the 'Aram' cultivar is expected to be broadly cultivated because of its higher soybean sprout quality, and seed yield and better adaptation to mechanized harvesting. (Registration number: 7718)

The Effects of Proinflammatory Cytokines and TGF-beta, on The Fibroblast Proliferation (Proinflammatory Cytokines과 TGF-beta가 섬유모세포의 증식에 미치는 영향)

  • Kim, Chul;Park, Choon-Sik;Kim, Mi-Ho;Chang, Hun-Soo;Chung, Il-Yup;Ki, Shin-Young;Uh, Soo-Taek;Moon, Seung-Hyuk;Kim, Yong-Hoon;Lee, Hi-Bal
    • Tuberculosis and Respiratory Diseases
    • /
    • v.45 no.4
    • /
    • pp.861-869
    • /
    • 1998
  • Backgrounds: The injury of a tissue results in the infalmmation, and the imflammed tissue is replaced by the normal parenchymal cells during the process of repair. But, constitutional or repetitive damage of a tissue causes the deposition of collagen resulting in the loss of its function. These lesions are found in the lung of patients with idiopathic pulmonary fibrosis, complicated fibrosis after diffuse alveolar damage (DAD) and inorganic dust-induced lung fibrosis. The tissue from lungs of patients undergoing episodes of active and/or end-stage pulmonary fibrosis shows the accumulation of inflammatory cells, such as mononuclear cells, neutrophils, mast cells and eosinophils, and fibroblast hyperplasia. In this regard, it appears that the inflammation triggers fibroblast activation and proliferation with enhanced matrix synthesis, stimulated by inflammatory mediators such as interleukin-1 (IL-1) and/or tumor necrosis factor (TNF). It has been well known that TGF-$\beta$ enhance the proliferation of fibroblasts and the production of collagen and fibronectin, and inhibit the degradation of collagen. In this regard, It is likely that TGF-$\beta$ undergoes important roles in the pathogenesis of pulmonary fibrosis. Nevertheless, this single cytokine is not the sole regulator of the pulmonary fibrotic response. It is likely that the balance of many cytokines including TGF-$\beta$, IL-1, IL-6 and TNF-$\alpha$ regulates the pathogenesis of pulmonary fibrosis. In this study, we investigate the interaction of TGF-$\beta$, IL-1$\beta$, IL-6 and TNF-$\alpha$ and their effect on the proliferation of fibroblasts. Methods: We used a human fibroblast cell line, MRC-5 (ATCC). The culture of MRC-5 was confirmed by immunofluorecent staining. First, we determined the concentration of serum in cuture medium, in which the proliferation of MRC-5 is supressed but the survival of MRC-5 is retained. Second, we measured optical density after staining the cytokine-stimulated cells with 0.5% naphthol blue black in order to detect the effect of cytokines on the proliferation of MRC-5. Result: In the medium containing 0.5% fetal calf serum, the proliferation of MRC-5 increased by 50%, and it was maintained for 6 days. IL-1$\beta$, TNF-$\alpha$ and IL-6 induced the proliferation of MRC-5 by 45%, 160% and 120%, respectively. IL-1$\beta$ and TNF-$\alpha$ enhanced TGF-$\beta$-induced proliferation of MRC-5 by 64% and 159%, but IL-6 did not affect the TGF-$\beta$-induced proliferation. And lNF-$\alpha$-induced proliferation of MRC-5 was reduced by IL-1$\beta$ in 50%. TGF-$\beta$, TNF-$\alpha$ and both induced the proliferation of MRC-5 to 89%, 135% and 222%, respectively. Conclusions: TNF-$\alpha$, TGF-$\beta$ and IL-1$\beta$, in the order of the effectiveness, showed the induction of MRC-5 proliferation of MRC-5. TNF-$\alpha$ and IL-1$\beta$ enhance the TGF-$\beta$-induced proliferation of MRC-5, but IL-6 did not have any effect TNF-$\alpha$-induced proliferation of MRC-5 is diminished by IL-1, and TNF-$\alpha$ and TGF-$\beta$ showed a additive effect.

  • PDF

Studies on the Method of Ground Vegetation Establishment of Denuded Forest Land in the Mudstone Region - The Characteristics of Mudstone and Speeded-up Reforestation - (니암지대황폐림지(泥岩地帶荒廢林地)의 지피식생(地被植生) 조성방법(造成方法)에 관(關)한 연구(硏究) - 니암특성((泥岩特性)과 조기녹화(早期綠化) -)

  • Chung, In Koo
    • Journal of Korean Society of Forest Science
    • /
    • v.19 no.1
    • /
    • pp.1-23
    • /
    • 1973
  • The results of ground vegetation experiment conducted at completely denuded forestland in the mudstone region are summerized as follows: On the reaults of soiling quantity the effect of soiling was observed where depth of soiling over 10 cm was practiced, and a plot where treated with 15cm soiling and without fertilizer showed poor growth and it was even worser than the plot where soiling was practiced only 1 cm in thikness but applied adequate amount of fertilizers. The depth of slits between 30cm and 40cm showed no significant difference in the effect. A plot where covered with vegetation bag showed somewhat better results in seed loss and early growth but no differences observed in the fall result over the none covered plot. And then, it is recommendable to have soiling over 10cm in thikness with slit of 30cm and 30cm in depth and to apply 30 gram of fertilizer (22;22:11, 50 gram) per slit. On various soiling materials trial there were no striking differences in the effect of soiling between weathered granite soil, wheathered tuffs soil and weathered mudstone soil. In the treatment with various green materials, a plot treated with straw mat showed a significant difference at 1 percent. The results show that weathered mudstone soil is effective to use as soiling materials and straw mat treatment was better. On forest fertilization trial, in the mudstone region where red and black pine trees already existing at a rate of 2,000-3,000 trees per hectare had applied 110kg of compound fertilizers (9:12:3 and 22:22:11) per hectare basis in terms of plant nutrient. As a result, the difference in effect between the compound fertilizers was not found however the leaf color and leaf length of the fertilizer added plot showed darker and longer at 30 percent over the no fertilizer received plot. Compound fertilizers, 14:37:12 and 9:12:3 were applied to alder trees at a rate of 20 gram and 40 gram per tree in terms of plant nutrient and a remarkable growth accelerantion was observed where 40 grams of plant nutrient applied. The effect difference between the compound fertilizers was not found. On investigation of tree root elongation, forty years old red pine trees showed only 15cm tap root elongation through mudstone while black pine had 23 cm tap root elongation. The total length of supporting root elongtion of red and black pines showed 20 and 13 meters, respectively. The tap roots of Black locusts were not able to elongate through mudstone, however, the supporting roots tended to develop to the underneath of pine tree where some moisture content is available. Black locusts And grown on the residual soil of mudstone normally die between 8 to 10 years. The red pine trees show flat in tree shape while black pine had triangle in the shape. With the results it can be said that in an artificial reforestation in denuded forest land of the mudstone region the adequate slit and enough amount of fertiliizer application must be provided for the succesful performance of the program. On integrated experimental results of 1972. for the establishment of ground vegetation on the completely denuded forest land in mudstone region, soiling could be effectively practiced with weathered mudstone soil and it would not specially necessiate to have either weathered granite or tuffssoil for the soiling. And the soiling depth should be more than 10 cm in thickness. Among green materials used the straw mat proved to be the most effective reatment. Three major factors which enable to establish ground vegetation by the shortest period of time: A. Physical improvement of soil is necessary to breakdown of the horizontal cracks sushas Slit, contour line plot, seeding hole and etc., and soiling with weathered mudstone soil. B. Chemical improvement of soil: is needed sufficient amount of fertilizer application 300~400kg ha, $N+P_2O_5+K_2O$), and increased production of ground covering and expedite resolution of the vegetation (ground vegetation, fallen leaves and twigs). C. Complete establishment of the basic structure for the erosion control (Prevention of surface soil erosion)

  • PDF