• Title/Summary/Keyword: Product Recycling

Search Result 593, Processing Time 0.031 seconds

Weight of Modularization using the Exchangeability of Product (교체성을 고려한 모듈화 결정요소의 중요도)

  • Mok, Hak-Soo;Jeon, Chang-Su;Han, Chang-Hyo;Song, Min-Jun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.4
    • /
    • pp.21-28
    • /
    • 2008
  • The exchangeability of subassembly has a good relationship with the modularization of product. This relationship can be found by the analysis of the characteristics of a product. The weight for decision factors for the modularization can be determined by the exchangeability of a product or subassembly. The functions, structure, materials of subassembly are used as the decision parameters of exchangeability. Using these selected parameters, the modularization of a product, the characteristics of product structure, and the product function are analyzed. And then, the weighting factors could be calculated quantitatively using this relationship and the parameters of the exchangeability. The calculated weight can contribute to help a designer design for recycling (DFR), design for energy (DFE) and Eco-design.

Management of Product Life Cycle Data for Environmental Design (환경친화적 설계를 위한 제품 전주기 데이터 관리)

  • 황오현;강무진;이화조;최병욱
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.115-120
    • /
    • 1997
  • Environmental Product Life Cycle Management is an activity for defining and describing the product, process or activity environmentally. Especially, the main responsibility for the environmental impact of products lies in the design phase of product. Designers cany a heavy responsibility to determine technical, economic and ecological properties of the product. So in order to help designers, structured understanding and application of treating large amount of data and infonnation should be considered. This paper presents a methodological approach for decision supporting to build Product Life Cycle Management system and show a set of database modeling. Additionally, a key issue for databases is the quality of the provided information.

  • PDF

Effect of Process By-products on Food Wastes Treatment Costs (공정부산물이 음식물쓰레기 처리비용에 미치는 영향 분석)

  • Yoo, Kee-Young;Yi, Sora
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.10 no.3
    • /
    • pp.110-116
    • /
    • 2002
  • The aim of this study was to analyze food waste treatment cost and to estimate effect of by-product, such as wastewater and foreign materials, on amount cost. In cost analysis, man power and facility capacity are fixed, whereas operation cost, by-product treatment and et, al. are varied by treatment methods. The rate of by-product treatment cost in amount cost are between 5% and 39%. The methods which consume large electric power or generate much wastewater showed higher rate of by-product treatment cost in range of 14 to 39%. On the other hand, the methods which have simple process showed lower rate in range of 5 to 11%. Thus, this study recommend that by-products should be treated in sewage treatment facilities or landfill sites to prevent illegal disposal of by-products or to reduce burden of by-product from private sectors.

  • PDF

Analyses for Current Research Status for the Coffee By-product and for Status of Coffee Wastes in Seoul (커피부산물의 최근 연구 동향 및 서울시의 커피찌꺼기 현황 분석)

  • Nam, Gnu;Kim, Min-suk;Ahn, Ji Whan
    • Journal of Energy Engineering
    • /
    • v.26 no.4
    • /
    • pp.14-22
    • /
    • 2017
  • Coffee consumption has been increased all around world as well as in South Korea. Coffee by-products occurred from the coffee consumption also have been rapidly increased, but the technology and methods to handle the by-product have not been much developed, resulting the severe environmental problems in soil and water. In order to solve this environmental problem, using the coffee by-product, eco-friendly and cheap methods for the recycling have been actively discussed and suggested. In this article, we discussed the types and characters of the coffee by-product and investigated the trend about the methods for utilizing the coffee by-product. In addition, we figured out the current status of coffee waste in Seoul, South Korea and discussed plans that Seoul government is working on to handle the coffee waste.

A Study on Engineering Characteristics of Geotechnical Material Using By-Product Lime and Pieces of Waste EPS Beads (석회부산물 및 폐 EPS beads를 활용한 지반재료의 공학적 특성에 관한 연구)

  • Bang, Yoon-Kyung;Park, Min-Yong;Yoon, Chang-Jin;Kim, Hong-Taek
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.2
    • /
    • pp.97-105
    • /
    • 2004
  • The purpose of this study is to provide the ways of recycling of by-product limes as lightweight fill, backfill materials, and lightweight blocks by performing experimental study. New lightweight fill materials and blocks were devised by mixing by-product lime, weathered granite soil, small pieces of waste EPS, and Portland cement. Physical, geotechnical, and environmental properties of the lightweight mixed soils and blocks were analysed by laboratory experiments for mixed samples manufactured with various mixing ratios. KMS tests were also performed to evaluate the concentration variation of the chemical components of the light weight blocks leachates. It is expected that this study will contribute to resolving the problem of by-product lime disposal as well as to recycling the by-product limes as fill materials and blocks.

Environment Emission and Material Flow Analysis of Chromium in Korea

  • Shin, Dong-won;Kim, Jeong-gon
    • Journal of Powder Materials
    • /
    • v.22 no.3
    • /
    • pp.187-196
    • /
    • 2015
  • With the stabilization of Korea's industrialization, it has become interested in the efficient use of rare metals, climate change and industrial environment and safety etc. It is thus making efforts to implement economic policies that address such issues. Therefore it is necessary to understand the demand, supply and use of metal materials. Since 2010, the Korean government has developed the integrated material flow methodology and has been trying to examine the demand, supply and use of metal materials. In 2013, the Korean government surveyed the material flow of chromium. Material flow analysis and environment emission of chromium were investigated 8 steps; (1) raw material, (2) first process, (3) Intermediate product, (4) End product, (5) Use/accumulation, (6) Collection, (7) Recycling, (8) Disposal. Chromium was used for stainless steel, alloy steel, coated sheets, refractory material and coating materials. Recycling was done mainly in use of stainless steel scrap. To ensure efficient use of chromium, process improvement is required to reduce the scrap in the intermediate product stage. In the process of producing of the products using chromium, it was confirmed that chromium was exposed to the environment. It requires more attention and protection against environment emission of chromium.

Characteristics of $SF_6$ Gas Recycling Processes ($SF_6$가스 회수 공정들의 특성 연구)

  • Cho, Hoon;Woo, Dae-Sik;Choi, Yu-Mi;Han, Myung-Wan
    • Clean Technology
    • /
    • v.17 no.4
    • /
    • pp.329-335
    • /
    • 2011
  • $SF_6$ gas is well known as a global warming gas. Global warming potential of $SF_6$ gas is 22,000 times higher than that of $CO_2$. Recycling of $SF_6$ gas is an essential technology for the sake of the environment and the economy. The recovery processes of $SF_6$ gas studied in this work were liquefaction, distillation, and crystallization processes because these processes were thought to be easily carried to the fields for recycling waste $SF_6$ gas. The processes were simulated and optimized using Aspen plus. The optimization problems were formulated to minimize energy consumption with satisfying product specification and desired recovery. The performance of the processes was compared based on the optimization results. Effects of major process variables on the recovery performance were investigated and optimal operation guide for changing product specification and product recovery was provided.

Characteristics of Concrete Using Ready-Mixed Concrete Recycled Water Mixed with Industrial By-Product Desulfurization Gypsum (산업부산물 탈황석고 혼입 레디믹스트콘크리트 회수수를 이용한 콘크리트의 특성)

  • Kim, Young-Yeop;Lee, Han-Seung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.395-403
    • /
    • 2020
  • CaO-based by-product, which consist of CaO, SO3, Al2O3 and so on, has being used to raw materials of CaO compound. When It was applied to recycling water of remicon, concrete performance can be enhanced because hydration reaction of powder material is accelerated. In this study, activated-sludge, which was putted desulfurization gypsum of CaO-based in recycling water, was manufactured to verify effect of them, and then they was investigated by characteristics of redy-mixde concrete. As a result of concrete tests, it was confirmed that there is no problem of strength or drying shrinkage while ensuring workability. Therefore, the possibility of specific application using activated sludge was confirmed.

A Study on the Establishment of the Standards for the Recycling Rate of Parts and Materials to Calculate Recyclability Rate of Electrical and Electronic Equipments (전기전자제품의 재활용가능률 산정을 위한 부품/소재의 재활용기준 정립에 관한 연구)

  • Yi, Hwa-Cho;Kang, Hong-Yun;Kim, Jin-Han;Shim, Kang-Sik;Kim, Jin-Ho;Han, Seong-Chul
    • Clean Technology
    • /
    • v.14 no.4
    • /
    • pp.232-241
    • /
    • 2008
  • European directive DIRECTIVE 2002/96/EC requires minimum recycling & recovery rates on waste electrical and electronic equipment (WEEE). We tried to make references for recycling and recovery rates of parts and materials used in electrical and electronic equipment (EEE), which could be used to calculate recyclability and recoverability rates of a product in the development phase. First, we investigated recycling processes of WEEE and recycling and recovery characteristics of parts and materials. Based on the investigation results and the european recycling data, we made a data base of parts and materials for calculation of recycling and recovery rates of EEE. The developed DB was improved by reflecting advices of european experts.

  • PDF

Development of an environment-friendly moving aquatic animal rendering equipment and evaluation of fertilizer value for recycling of fish waste (친환경 이동식 수산생물 폐사체 처리장치 개발 및 재활용을 위한 비료 가치 평가)

  • Kim, Jae-Ok;Kim, Su-Mi;Seo, Jung-Soo;Jee, Bo-Young;Kim, Young-Jae;Kwon, Mun-Gyeong
    • Journal of fish pathology
    • /
    • v.33 no.1
    • /
    • pp.97-101
    • /
    • 2020
  • Although aquaculture production rates grown over the years, aquatic animal diseases occur every year which causes substantial economic losses. When an aquatic animal is infected with an aquatic animal pathogen it is either incinerated or buried according to the aquatic life disease control act. Although these methods prevent the spread of disease, it is not environment friendly. Here, we developed an aquatic animal rendering equipment for disposal of fish waste which is environment-friendly and efficient. Also, fertilizer components of fish waste were evaluated value for recycling. The mobile rendering equipment was designed for field operation and/or high temperature and pressure system, oil and water separator, and shredding drying apparatus. During the experiment (July-2016 to November-2016), a total of 53,824 kg fish waste was collected, and 29,216 kg compost of rendering by-product was made. Also, compost made from viral (Viral hemorrhagic septicemia virus) infected fish did not reflect any detectable pathogen. The concentration of nitrogen, phosphorus, and organic matter in the fish waste compost were 2.17%, 26.98%, and 92.44%, respectively. The results suggest that fish waste used in this study was decomposed efficiently as per the official standard for fertilizer product. This equipment can be useful for efficient inactivation of the aquatic animal pathogenic agents and recycling of the fish waste in an environment-friendly manner.