• 제목/요약/키워드: Product Recommendation

검색결과 312건 처리시간 0.024초

A Study on the effect of product recommendation system on customer satisfaction: focused on the online shopping mall

  • CHO, Ba-Da;POTLURI, Rajasekhara Mouly;YOUN, Myoung-Kil
    • 산경연구논집
    • /
    • 제11권2호
    • /
    • pp.17-23
    • /
    • 2020
  • Purpose: The purpose of this study is to understand the effect of the unique product recommendation system on customer satisfaction. Research design, data and methodology: The survey method used the self-recording way in which the respondents selected for the study and distributed 300 questionnaires, and with due personal care, researchers collected all the distributed questionnaires. Results: The result implies that the characteristics of the product recommendation system should be more secure and developed. Conclusions: The aspects of the product recommendation system were selected as factors of price fairness, accuracy, and quality through previous studies, and the empirical analysis of the effect of the characteristics of the product recommendation system on customer satisfaction was summarized as follows. Among the attributes of the product recommendation system, the attributes of price fairness, accuracy, and quality affect customer satisfaction. Among them, the beta value of quality was the highest, and the effect of quality was the largest among the three factors. Based on the results of the study, the implications for the characteristics of the product recommendation system are summarized as follows. The aspects of the product recommendation system have a positive effect on customer satisfaction, so it is necessary to fill the needs of consumers based on the survey focused on quality

심층신경망 기반의 뷰티제품 추천시스템 (Deep Neural Network-Based Beauty Product Recommender)

  • 송희석
    • Journal of Information Technology Applications and Management
    • /
    • 제26권6호
    • /
    • pp.89-101
    • /
    • 2019
  • Many researchers have been focused on designing beauty product recommendation system for a long time because of increased need of customers for personalized and customized recommendation in beauty product domain. In addition, as the application of the deep neural network technique becomes active recently, various collaborative filtering techniques based on the deep neural network have been introduced. In this context, this study proposes a deep neural network model suitable for beauty product recommendation by applying Neural Collaborative Filtering and Generalized Matrix Factorization (NCF + GMF) to beauty product recommendation. This study also provides an implementation of web API system to commercialize the proposed recommendation model. The overall performance of the NCF + GMF model was the best when the beauty product recommendation problem was defined as the estimation rating score problem and the binary classification problem. The NCF + GMF model showed also high performance in the top N recommendation.

제품관여 수준에 따라 소셜 정보가 추천 성능에 미치는 영향 (The Effects of Social Information on Recommendation Performance According to the Product Involvement Level)

  • 송희석;주석정;이재훈
    • Journal of Information Technology Applications and Management
    • /
    • 제21권4_spc호
    • /
    • pp.361-379
    • /
    • 2014
  • With the rapid increase of social network usage, there are emerging trends of adopting social information among online users in building recommendation system. This study aims to investigate whether the additional usage of social information can improve recommendation performance in recommendation system and how much the improvement can be different according to the product involvement level. As an experiment result, social information does not affect positively to the recommendation accuracy but affect significantly to the recommendation quality. Also social information contributed more sensitively to the improvement of recommendation quality in high product involvement domain.

자기해석유형과 모바일 상품추천유형, 패션제품유형이 구매의도에 미치는 영향 (The Effect of Self-Construal Type, Mobile Product Recommendation System Type and Fashion Product Type on Purchase Intention in Moblie Shopping Environment)

  • 전태준;황선진;최동은
    • 패션비즈니스
    • /
    • 제25권5호
    • /
    • pp.25-37
    • /
    • 2021
  • As the online shopping market grows, channels in the mobile shopping environment have become increasingly diverse as a wide variety of products are introduced every day. This study investigated the effects of the self-construal type, mobile product recommendation system type, and fashion product type on purchase intention. The experimental design of this study was a 2 (self-construal type: independent vs. interdependent) × 2 (product recommendation system: bestseller vs. content-based) × 2 (fashion product type: utilitarian vs. hedonic) 3-way mixed ANOVA. Women (n = 387) in their 20 to 30s residing in Seoul and the Gyeonggi area participated in the study. The data were analyzed with the SPSS 24 program and 3-way ANOVA and simple main effects analyses were conducted. The results were as follows. First, self-construal, product recommendation, and fashion product types had a statistically significant impact on purchase intention. Second, fashion product and consumers' self-construal types had significant interaction effects on purchase intention. Finally, product recommendation and fashion product and self-construal types showed significant 3-way interaction effects on purchase intention. The study confirmed an interaction between the self-construal, type of product recommendation system, and the type of fashion product used in influencing purchase intention.

전자상거래 개인화 추천을 위한 상품 카테고리 중립적 사용자 프로파일링 (Cross-Product Category User Profiling for E-Commerce Personalized Recommendation)

  • 박수환;이홍주;조남재;김종우
    • Asia pacific journal of information systems
    • /
    • 제16권3호
    • /
    • pp.159-176
    • /
    • 2006
  • Collaborative filtering is one of the popular techniques for personalized recommendation in e-commerce. In collaborative filtering, user profiles are usually managed per product category in order to reduce data sparsity. Product diversification of Internet storefronts and multiple product category sales of e-commerce portals require cross-product category usage of user profiles in order to overcome the cold start problem of collaborative filtering. In this paper, we study the feasibility of cross-product category usage of user profiles, and suggest a method to improve recommendation performance of cross-product category user profiling. First, we investigate whether user profiles on a product category can be used to recommend products in other product categories. Furthermore, a way of utilizing user profiles selectively is suggested to increase recommendation performance of cross-product category user profiling. The feasibility of cross-product category user profiling and the usefulness of the proposed method are tested with real click stream data of an Internet storefront which sells multiple product categories including books, music CDs, and DVDs. The experiment results show that user profiles on a product category can be used to recommend products in other product categories. Also, the selective usage of user profiles based on correlations between subcategories of two product categories provides better performance than the whole usage of user profiles.

의류상품의 온라인 대량고객화 제품추천 서비스에 대한 소비자의 감정적, 인지적 반응 (Product Recommendation Service in Online Mass Customization: Consumers' Cognitive and Affective Responses)

  • 문희강;이현화
    • 한국의류학회지
    • /
    • 제36권11호
    • /
    • pp.1222-1236
    • /
    • 2012
  • This study examined the effects of product recommendation services as an atmosphere for online mass customization shopping sites on consumers' cognitive and affective responses. We conducted a between-subject experimental study using a convenience sample of college students. A total of 196 participants provided usable responses for structural equation modeling analysis. The findings of the study support the S-O-R model for a product recommendation system as an element of the shopping environment with an influence on OMC product evaluations and arousal. The results showed that OMC product recommendation service positively affected cognitive and affective responses. The findings of the study suggest that OMC retailers might pay attention to the affective and cognitive responses of consumers through product recommendation services that can enhance product evaluations and OMC usage intentions.

유비쿼터스 환경에서 연관규칙과 협업필터링을 이용한 상품그룹추천 (Product-group Recommendation based on Association Rule Mining and Collaborative Filtering in Ubiquitous Computing Environment)

  • 김재경;오희영;권오병
    • 한국IT서비스학회지
    • /
    • 제6권2호
    • /
    • pp.113-123
    • /
    • 2007
  • In ubiquitous computing environment such as ubiquitous marketplace (u-market), there is a need of providing context-based personalization service while considering the nomadic user preference and corresponding requirements. To do so, the recommendation systems should deal with the tremendous amount of context data. Hence, the purpose of this paper is to propose a novel recommendation method which provides the products-group list of the customers in u-market based on the shopping intention and preferences. We have developed FREPIRS(FREquent Purchased Item-sets Recommendation Service), which makes recommendation listof product-group, not individual product. Collaborative filtering and apriori algorithm are adopted in FREPIRS to build product-group.

온·오프라인 지인의 추천메시지가 제품태도와 구매의도에 미치는 영향 (Effect of On/off-line Acquaintance's Recommendation Message on Product Attitude and Purchase Intention)

  • 이정우;김미영
    • 한국의류학회지
    • /
    • 제40권6호
    • /
    • pp.1010-1024
    • /
    • 2016
  • This study identifies the influence of on/off-line acquaintances' recommendation messages on fashion product attitude and purchase intention on the online purchase of fashion products in two-sided word of mouth situations as well as compares the difference in influence according to bond-base with equidistance. This study was conducted for one month on university students in their 20s who were believed to be active in smartphone use. Out of the collected 174 copies of the questionnaire, 162 copies were used for analysis. The questionnaire was classified into online and offline recommendation messages of an acquaintance. We present two-sided fashion product reviews made similar to the type found in an actual shopping mall web-site. As for analysis, confirmatory factory analysis, structural equation modeling, and multi-group analysis were conducted using AMOS 19.0. The analysis results are as follows. First, on/off-line acquaintances' recommendation messages had significant influences on product attitude in the situation where two-sided reviews on fashion products were presented; however, those messages did not influence purchase intention. Recommendation messages positively increased product attitude and enhanced purchase intention if acquaintances' recommendation messages were mediated between on/off-line acquaintances' recommendation messages and purchase intention. Consequently, a mediating effect on product attitude was revealed. Second, there was no difference between online acquaintances and offline acquaintances in terms of the influence of acquaintances' recommendation messages on product attitude and purchase intention, in the situation where two-sided reviews were presented on online fashion products. Therefore, no control effect according to the type of acquaintance was confirmed.

Digital Signage System Based on Intelligent Recommendation Model in Edge Environment: The Case of Unmanned Store

  • Lee, Kihoon;Moon, Nammee
    • Journal of Information Processing Systems
    • /
    • 제17권3호
    • /
    • pp.599-614
    • /
    • 2021
  • This paper proposes a digital signage system based on an intelligent recommendation model. The proposed system consists of a server and an edge. The server manages the data, learns the advertisement recommendation model, and uses the trained advertisement recommendation model to determine the advertisements to be promoted in real time. The advertisement recommendation model provides predictions for various products and probabilities. The purchase index between the product and weather data was extracted and reflected using correlation analysis to improve the accuracy of predicting the probability of purchasing a product. First, the user information and product information are input to a deep neural network as a vector through an embedding process. With this information, the product candidate group generation model reduces the product candidates that can be purchased by a certain user. The advertisement recommendation model uses a wide and deep recommendation model to derive the recommendation list by predicting the probability of purchase for the selected products. Finally, the most suitable advertisements are selected using the predicted probability of purchase for all the users within the advertisement range. The proposed system does not communicate with the server. Therefore, it determines the advertisements using a model trained at the edge. It can also be applied to digital signage that requires immediate response from several users.

Assessing Personalized Recommendation Services Using Expectancy Disconfirmation Theory

  • Il Young Choi;Hyun Sil Moon;Jae Kyeong Kim
    • Asia pacific journal of information systems
    • /
    • 제29권2호
    • /
    • pp.203-216
    • /
    • 2019
  • There is an accuracy-diversity dilemma with personalized recommendation services. Some researchers believe that accurate recommendations might reinforce customer satisfaction. However, others claim that highly accurate recommendations and customer satisfaction are not always correlated. Thus, this study attempts to establish the causal factors that determine customer satisfaction with personalized recommendation services to reconcile these incompatible views. This paper employs statistical analyses of simulation to investigate an accuracy-diversity dilemma with personalized recommendation services. To this end, we develop a personalized recommendation system and measured accuracy, diversity, and customer satisfaction using a simulation method. The results show that accurate recommendations positively affected customer satisfaction, whereas diverse recommendations negatively affected customer satisfaction. Also, customer satisfaction was associated with the recommendation product size when neighborhood size was optimal in accuracy. Thus, these results offer insights into personalizing recommendation service providers. The providers must identify customers' preferences correctly and suggest more accurate recommendations. Furthermore, accuracy is not always improved as the number of product recommendation increases. Accordingly, providers must propose adequate number of product recommendation.