• Title/Summary/Keyword: Product Design Simulation

Search Result 542, Processing Time 0.027 seconds

Die Design of Semi-Solid Forging by Computer Simulation and their Experimental Investigation (Computer Simulation에 의한 Semi-Solid 단조금형의 설계 및 실험적 검정)

  • Seo P. K.;Lee D. H.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.185-190
    • /
    • 2000
  • Die design by computer simulation has some advantages compared with the conventional method which has performed by designer's experiences and trials and errors. The die filling and solidification process of thixoforming process were simulated by MAGMAsoft/thixo module. First of all, thixoforming die design was applied to previously geometry shape. The value of pressure distribution shows high and uniform as the gate diameter is 18mm. Designed gating system considering the deformation of die and product was suggested by the filling simulation. Gate velocity(7.25m/s) of designed gating system shows that propriety to semi-solid metal working process and CAE results were in good agreement with experimental results.

  • PDF

Drop/Impact Simulation and Experimental Verification of Mobile Phone (휴대용 단말기의 낙하충격해석 및 실험적 검증)

  • Kim, Jin-Gon;Lee, Jun-Yeong;Lee, Sin-Yeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.4
    • /
    • pp.695-702
    • /
    • 2001
  • In this paper, the drop/impact simulation for a mobile phone has been carried out with the explicit code LS-DYNA and its validation has been experimentally verified. The small size of this kind of electronics products makes it time-consuming, and difficult to conduct drop tests to detect the failure mechanism and identify their drop behaviors. Strict drop/impact performance criteria of such hand held electronic products as mobile phones play an important role in their design because these products must withstand both normal and unexpected shock. Usually, the product durability on drop impact depends on designers experience. The present reliable methodology of drop/impact simulation provides an efficient and powerful vehicle to improve the design quality and reduce the design period.

Depth Camera-Based Posture Discrimination and Motion Interpolation for Real-Time Human Simulation (실시간 휴먼 시뮬레이션을 위한 깊이 카메라 기반의 자세 판별 및 모션 보간)

  • Lee, Jinwon;Han, Jeongho;Yang, Jeongsam
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.1
    • /
    • pp.68-79
    • /
    • 2014
  • Human model simulation has been widely used in various industrial areas such as ergonomic design, product evaluation and characteristic analysis of work-related musculoskeletal disorders. However, the process of building digital human models and capturing their behaviors requires many costly and time-consuming fabrication iterations. To overcome the limitations of this expensive and time-consuming process, many studies have recently presented a markerless motion capture approach that reconstructs the time-varying skeletal motions from optical devices. However, the drawback of the markerless motion capture approach is that the phenomenon of occlusion of motion data occurs in real-time human simulation. In this study, we propose a systematic method of discriminating missing or inaccurate motion data due to motion occlusion and interpolating a sequence of motion frames captured by a markerless depth camera.

A Study on Collaborative Environment for Development of Submarine: Focusing on Modeling System for Digital Submarine

  • Oh, Dae-Kyun;Shin, Jong-Gye;Jeong, Yeon-Hwan
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.4
    • /
    • pp.214-222
    • /
    • 2012
  • The shipbuilding process is changing due to changes in the development environment and technological requirements for military ships. This would also hold true for a submarine, because its shipbuilding process includes complicated design and construction conditions. System improvement efforts for the design and construction of military ships have continued with the goal of overcoming these conditions. At present, the Korea Navy is developing a 3,000 ton-class Korean type submarine, and its design is progressing by the introduction of a full 3D-ship CAD system. Although the 3D modeling system was introduced for effective design realization through the introduction of collaborative design and active utilization of M&S (modeling and simulation), the introduction effects are not yet generally obvious, according to the characteristics of ship design. The present paper discusses the collaborative environment for developing a submarine to enhance this. This paper proposes the architecture and data structure of a system for realizing collaborative design and discusses a case system developed on the basis of this.

Convergence Research for CIGS Solar Cell Aesthetics Product Design Development for Utilizing Urban Living Structures (도시 생활구조물 활용을 위한 CIGS 태양전지 심미성 향상 제품디자인 개발융합연구)

  • Jo, Jae-Yoon;Jang, Hui-su;Jeong, Je-yoon;Nam, Won-Suk;Jang, Joong-Sik
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.4
    • /
    • pp.157-163
    • /
    • 2020
  • This paper is a product design convergence study to improve the aesthetic quality of CIGS solar cells for utilizing urban living structures, identifying problems of existing solar cell panels and drawing expert aesthetic elements for improving CIGS solar cells through survey and [Group discussion of experts] based on aesthetic elements of product design. Out of the aesthetic elements derived, the top three models of the product design process were 'environmental harmonization', 'pattern balance', and 'period universality' to derive the design and assembly design of the CIGS solar cell module for improving aesthetic quality, and applied to apartments, veranda, windows, and streetcar through product simulation. This study is suitable for applying aesthetic and CIGS solar cell function later to actual urban living structure, and future research direction needs to be studied on various patterns and structural design development of design.

Simulation-based Multi-stage Tool Design for an Electronic part with Ferritic Stainless Steel Sheet (400계 스테인리스 판재의 가전 부품 적용을 위한 전산해석 기반 다단 금형설계)

  • Park, K.D.;Jang, J.H.;Kim, S.H.;Kim, K.P.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.174-177
    • /
    • 2008
  • This paper replaces an conventional 300-austenitic stainless steel sheet to a 400-ferritic stainless steel for the cost reduction of a pulsator cover of a washing machine. However, ferritic stainless steel has poor formability in comparison with austenitic one. The low formability of ferritic steel results in problems during stamping such as fracture, wrinkling, shape inaccuracy and so on. Design modification of the stamping tool is carried out with the aid of the finite element analysis for multi-stage stamping process. The simulation results show that fracture occurs on top of the product while wrinkles are generated by the excess metal near the wing part. Modification of the initial stamping die is performed to improve metal flow and to eliminate problems during the stamping process. Simulation with the modified design fully demonstrates that safe forming is possible without inferiorities.

  • PDF

A Comparative Study on Optimization Procedures to Robust Design (로버스트설계에서 최적화방안에 대한 비교 연구)

  • Kwon, Yong-Man;Mun, In-Suk
    • Journal of the Korean Data and Information Science Society
    • /
    • v.11 no.1
    • /
    • pp.65-72
    • /
    • 2000
  • Robust design is an approach to reducing performance variation of quality characteristic values in quality engineering. Taguchi parameter design has a great deal of advantages but it also has some disadvantages. The various research efforts aimed at developing alternative methods. In the Taguchi parameter design, the product-array approach using orthogonal arrays is mainly used. However, it often requires an excessive number of experiments. An alternative approach, which is called the combined-array approach, was suggested by Welch et. al. (1990) and studied by others. In this paper we make a comparative study on optimization procedures to robust design in the two different experimental design(product array, combined array) approaches the Mough the Monte Carlo simulation.

  • PDF

A Basic Research for the Development of Generalized Shape Guided Automatic Deburring Machine (형상안내형 범용형상자동면취기의 개발을 위한 기초연구)

  • Kim, Sang-Myng;Jung, Yoon-Gyo;Cho, Sung-Leem
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.3
    • /
    • pp.104-109
    • /
    • 2012
  • Recently, the deburring process which is last process of manufacture is one of the important process for complete product. The manual deburring process can cause not only higher error rate but also irregular shape and quality of product. Therefore, Shape Guided Automatic Deburring Machine has been developed to resolve the above problems. But the Shape Guided Automatic Deburring Machine have been applied only to produce a circular product. Therefore, this machine is difficult to apply to products of various shapes. To solve this problem, we would like to develop Generalized Shape Guided Automatic Deburring Machine applicable to various shapes. To this end, we have done the modeling and design using CATIA program and have performed machine simulation.

An integrated design approach for Light Guide Panel(LGP) of Back Light Unit(BLU) to improve the Optical Performance of Liquid Crystal Display(LCD) (LCD 제품의 광학 성능 향상을 위한 백라이트 유닛용 도광판의 최적설계)

  • Lee, Gab-Seong;Jeong, Jae-Ho;Yoon, Sang-Joon;Choi, Dong-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1048-1052
    • /
    • 2008
  • Difficulties in developing process of Liquid Crystal Display(LCD) products such as frequent design modifications, various design requirements, and short-term development period bring on the need of integrated design approach that is efficient and easy to handle. Back Light Unit(BLU) of the LCD, which drastically affects the optical performance of LCD products, is divided into in-coupling part and out-coupling part. Serration of the in-coupling part flattens the light received from point light sources and dot pattern of the out-coupling part regularizes the light sent to screen. Therefore, the optical performance of a LCD product is largely influenced by the shape of serration and the arrangement of dot pattern. In this research, a new design approach which enables to improve the optical performance of LCD products and overcome the prementioned difficulties in developing process of LCD products is proposed. The shape of serration is parameterized to 3 parameters and out-coupling part is partitioned into 10 partitions to apply the optimization technique to this problem. 3 parameters for the shape of serration and densities of 10 partitions are used as design variables in the design optimization. Optical simulation tool named SPEOS is used to evaluate the optical performance of the LCD product. Since the optical simulation uses the random ray tracing technique, numerical noise may possibly be included in the simulation process. To solve the problem caused by numerical noise, the PQRSM which can stably find the solution of the noise problem is used in this research.

  • PDF

Analysis of the Physical Quantity Variation in the Cavity and the Quality of the Molded Product According to the Injection Speed in Injection Molding

  • Kwon, Soon Yong;Cho, Jung Hwan;Roh, Hyung Jin;Cho, Sung Hwan;Lee, Yoo Jin;Lyu, Min-Young
    • Elastomers and Composites
    • /
    • v.52 no.4
    • /
    • pp.317-325
    • /
    • 2017
  • Molding conditions can be described as factors that determine the quality of a product obtained from injection molding. Many studies have been performed on the injection molding pressure, injection temperature, packing pressure and other molding conditions related to part quality. However, the most accessible factor among the adjustable molding conditions during actual injection is the injection speed. In this study, we simulated the variation of the physical quantity according to injection speed and performed experiments to understand the effect of injection speed on the actual product. A CAE analysis program (Moldflow) was used to simulate and analyze the results using PC and PBT for two models. In order to compare these results with the experimental results, an actual injection molding was performed for each injection speed, and the correlation between simulation and injection molding, especially for the shrinkage of the molded article, was discussed.