• Title/Summary/Keyword: Processor In the Loop

Search Result 127, Processing Time 0.02 seconds

Optimizing Skyline Query Processing Algorithms on CUDA Framework (CUDA 프레임워크 상에서 스카이라인 질의처리 알고리즘 최적화)

  • Min, Jun;Han, Hwan-Soo;Lee, Sang-Won
    • Journal of KIISE:Databases
    • /
    • v.37 no.5
    • /
    • pp.275-284
    • /
    • 2010
  • GPUs are stream processors based on multi-cores, which can process large data with a high speed and a large memory bandwidth. Furthermore, GPUs are less expensive than multi-core CPUs. Recently, usage of GPUs in general purpose computing has been wide spread. The CUDA architecture from Nvidia is one of efforts to help developers use GPUs in their application domains. In this paper, we propose techniques to parallelize a skyline algorithm which uses a simple nested loop structure. In order to employ the CUDA programming model, we apply our optimization techniques to make our skyline algorithm fit into the performance restrictions of the CUDA architecture. According to our experimental results, we improve the original skyline algorithm by 80% with our optimization techniques.

A analysis on the satellite tracking performance of Az mount on shipboard (선박탑재 Az mount의 위성추적 성능에 대한 분석)

  • 최조천;주양로
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.132-137
    • /
    • 2003
  • This performance is motivated to develop a tracking antenna system for receive the satellite broadcasting signal in the coast sailing ship. Therefore, this system is made to small size, light weight and simple operation which is must to low cost system for popularization of small size ship and adaptive possibilities with useful on a ship in the coast using 1 axis Az-mount. The antenna mount structure is a compact size and easy operation to the Az-axis type which is operated by step motor. The antenna unit is a domestic made plate type of patch array and ship's moving detection is using the gyro sensor for ship's moving control. We are designed to algorithm, which walking is abreast for step track and ship's moving compensation. Ship's moving compensation is adapted to the closed loop control method by detection from gyro sensor. This system is consisted of micro processor, ADC, comparative amplifier, step motor driver, mount mechanism and algorithm. We have analysised the tracking performance of prototype on sailing ship board.

  • PDF

A analysis on the satellite tracking performance of Az mount on shipboard (선박탑재 Az mount의 위성추적 성능에 대한 분석)

  • 최조천
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.6
    • /
    • pp.1130-1137
    • /
    • 2003
  • This performance is motivated to develop a tracking antenna system for receive the satellite broadcasting signal in the coast sailing ship. Therefore, this system is made to small size, light weight and simple operation which is must to low cost system for popularization of small size ship and adaptive possibilities with useful on a ship in the coast using 1 axis Az-mount. The antenna mount structure is a compact size and easy operation to the Az-axis type which is operated by step motor. The antenna unit is a domestic made plate type of patch array and ship's moving detection is using the gyro sensor for ship's moving control. We are designed to algorithm, which walking is abreast for step track and ship's moving compensation. Ship's moving compensation is adapted to the closed loop control method by detection from gyro sensor. This system is consisted of micro processor, ADC, comparative amplifier, step motor driver, mount mechanism and algorithm. We have analysised the tracking performance of prototype on sailing ship board.

Memory data layout and DMA transfer technique research For efficient data transfer of CNN accelerator (CNN 가속기의 효율적인 데이터 전송을 위한 메모리 데이터 레이아웃 및 DMA 전송기법 연구)

  • Cho, Seok-Jae;Park, Sungkyung;Park, Chester Sungchung
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.559-569
    • /
    • 2020
  • One of the deep-running algorithms, CNN's artificial intelligence application uses off-chip memory to store data on the Convolution Layer. DMA can reduce processor load at every data transfer. It can also reduce application performance degradation by varying the order in which data from the Convolution layer is transmitted to the global buffer of the accelerator. For basic layouts with continuous memory addresses, SG-DMA showed about 3.4 times performance improvement in pre-setting DMA compared to using ordinaly DMA, and for Ideal layouts with discontinuous memory addresses, the ordinal DMA was about 1396 cycles faster than SG-DMA. Experiments have shown that a combination of memory data layout and DMA can reduce the DMA preset load by about 86 percent.

A Performance Evaluation of Parallel Color Conversion based on the Thread Number on Multi-core Systems (멀티코어 시스템에서 쓰레드 수에 따른 병렬 색변환 성능 검증)

  • Kim, Cheong Ghil
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.4
    • /
    • pp.73-76
    • /
    • 2014
  • With the increasing popularity of multi-core processors, they have been adopted even in embedded systems. Under this circumstance many multimedia applications can be parallelized on multi-core platforms because they usually require heavy computations and extensive memory accesses. This paper proposes an efficient thread-level parallel implementation for color space conversion on multi-core CPU. Thread-level parallelism has been becoming very useful parallel processing paradigm especially on shared memory computing systems. In this work, it is exploited by allocating different input pixels to each thread for concurrent loop executions. For the performance evaluation, this paper evaluate the performace improvements for color conversion on multi-core processors based on the processing speed comparison between its serial implementation and parallel ones. The results shows that thread-level parallel implementations show the overall similar ratios of performance improvements regardless of different multi-cores.

Design of DSP based Depolarized Fiber Optic Gyroscope (DSP 기반의 비편광 광자이로스코프 설계)

  • Yoon, Yeong-gyoo;Joo, Min-sik;Kim, Yeong-jin;Kim, Jae-hyoung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.153-156
    • /
    • 2009
  • The interferometric fiber optic gyroscopes (FOGs) are well known as sensors of rotation, which are based on Sagnac effect, and have been under development for a number of years to meet a wide range of performance requirements. This paper describes the development of open-loop FOG and digital signal processing techniques implemented on FPGA. Our primary goal was to obtain intermediate accuracy (pointing grade) with a good bias stability ($0.22^{\circ}/hr$) and scale factor stability, extremely low angle random walk ($0.07^{\circ}/\sqrt{hr}$) and significant cost savings by using a single mode fiber. A secondary goal is to design all digital FOG signal processing algorithms with which the SNR at the digital demodulator output is enhanced substantially due to processing gain. The CIC type of decimation block only requires adders and shift registers, low cost processors which has low computing power still can used in this all digital FOG processor.

  • PDF

Development of Left Turn Response System Based on LiDAR for Traffic Signal Control

  • Park, Jeong-In
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.11
    • /
    • pp.181-190
    • /
    • 2022
  • In this paper, we use a LiDAR sensor and an image camera to detect a left-turning waiting vehicle in two ways, unlike the existing image-type or loop-type left-turn detection system, and a left-turn traffic signal corresponding to the waiting length of the left-turning lane. A system that can efficiently assign a system is introduced. For the LiDAR signal transmitted and received by the LiDAR sensor, the left-turn waiting vehicle is detected in real time, and the image by the video camera is analyzed in real time or at regular intervals, thereby reducing unnecessary computational processing and enabling real-time sensitive processing. As a result of performing a performance test for 5 hours every day for one week with an intersection simulation using an actual signal processor, a detection rate of 99.9%, which was improved by 3% to 5% compared to the existing method, was recorded. The advantage is that 99.9% of vehicles waiting to turn left are detected by the LiDAR sensor, and even if an intentional omission of detection occurs, an immediate response is possible through self-correction using the video, so the excessive waiting time of vehicles waiting to turn left is controlled by all lanes in the intersection. was able to guide the flow of traffic smoothly. In addition, when applied to an intersection in the outskirts of which left-turning vehicles are rare, service reliability and efficiency can be improved by reducing unnecessary signal costs.