• Title/Summary/Keyword: Processing of ship-borne gravity

Search Result 3, Processing Time 0.021 seconds

Data Process and Precision Analysis of Ship-Borne Gravity (선상 중력자료의 처리 및 정밀도 분석)

  • Keum, Young-Min;Kwon, Jay-Hyoun;Lee, Ji-Sun;Choi, Kwang-Sun;Lee, Young-Cheol
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.1
    • /
    • pp.89-97
    • /
    • 2010
  • The ship-borne gravity data is essential to construct geoid in Korea surrounding ocean area. The altimeter data was used in previous study, however, the ship-borne gravity data could be used due to more ship-borne data was collected by improvement of instrument, positioning system. Therefore, the study on verification of precision of ship-borne gravity data and practical usage analysis is needed. In this study, free-air anomaly having 16.47mGal and 18.86mGal as mean and standard deviation was obtained after consistent processing such as Eotvos correction, Kalman Filter, Cross-over adjustment etc. The calculated free-air anomaly was compared to DNSC08 altimeter data and the difference was computed having -0.88mGal and 9.46mGal of mean and standard deviation. The reason causing those differences are owing to spatial limits of data acquisition and effects of ocean topography. To use ship-borne gravity data for precision geoid development, the efforts to overcome the limits of data collection and study for data combination should be proceeded.

Free-air anomaly from Airborne Gravity Surveying (항공중력측정에 의한 프리에어 이상 산출)

  • Lee, Ji-Sun;Kwon, Jay-Hyoun;Lee, Bo-Mi;Hong, Chang-Ki
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.2
    • /
    • pp.139-147
    • /
    • 2009
  • The gravity data collected and reserved in Korea is seriously biased in its distribution. That is, only the west-southern part of the peninsula including Chungcheong and Jeonla area has dense distribution while only a part is covered in Gyoungsang area. Especially, the low density of the gravity data in mountainous area basically limits the accuracy of the gravimetric geoid in Korea. As one of the solution to overcome the problem, an airborne gravity survey were conducted from Dec. 2008 $\sim$ Jan. 2009. In this study, free-air gravity anomaly derived from the airborne gravity data which has consistent quality are presented. The data processing for the airborne gravity is composed of several corrections of errors such as errors from gravity measurement, errors from flight dynamics, errors from GPS, and errors from time synchronization. We presented detailed explanations on the data processing with the final cross-over results. The free-air anomaly from airborne gravity finally shows the cross-over accuracy of 2.21mGal which reflects the precision of each track is 1.56mGal. It is expected that the result from this study will play a role as input data in precision geoid determination with ground and ship-borne gravity data after appropriate fusion process.

Determination of the Optimal Parameters in Data Processing for the Precision Geoid Construction (정밀 지오이드 구축을 위한 자료처리의 최적 변수 결정)

  • Lee, Ji-Sun;Kwon, Jay-Hyoun
    • Spatial Information Research
    • /
    • v.17 no.3
    • /
    • pp.397-404
    • /
    • 2009
  • To solve the problems of distribution and quality on land gravity data, airborne gravity survey was performed in 2008 obtaining the airborne gravity data with accuracy of 1.56mGal. Since airborne gravity data is the obtained at the flight height, it is necessary to convert the airborne gravity data to the surface to combine various gravity data and compute precision geoid. In addition, Stokes' integral radius, Stokes' kernel and the radius of terrain effect computation should be optimally determined to calculate precision geoid. In this study, we made an effort to decide the optimal parameters based on the distribution and the characteristic of gravity data. Then, two geoid models were calculated using the selected parameters and the difference of geoid was calculated with mean of -16.95cm and the standard deviation of ${\pm}8.50cm$. We consider that this difference is due to the distribution and errors on the gravity data. For future work, the study on the effect of geoid with newly obtained land gravity data ship-borne gravity data and GPS/Leveling data should be conducted. Furthermore, the study on the downward continuation and terran effect calculation should be studied in detail for better precision geoid construction.

  • PDF