• Title/Summary/Keyword: Processing element

Search Result 1,750, Processing Time 0.032 seconds

Image Segmentation Improvement by Selective Application Structuring Element of Mathematical Morphology (수리 형태학의 선택적 구조요소 적용에 의한 영상 분할의 성능 개선)

  • 오재현;김성곤;김종협;신홍규;김환용
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.1972-1975
    • /
    • 2003
  • Video segmentation is an essential part in region-based video coding and any other fields of the video processing. Among lots of methods proposed so far, the watershed method in which the region growing is performed for the gradient image can produce well-partitioned regions globally without any influence on local noise and extracts accurate boundaries. But, it generates a great number of small regions, which we call over segmentation problem. Therefore we proposes image segmentation improvement by selective application structuring element of mathematical morphology.

  • PDF

Finite Element Analysis of SMC Compression Molding Processes (SMC 압축성형 공정에 관한 유한요소해석)

  • Lee, Choong-Ho;Huh, Hoon
    • Transactions of Materials Processing
    • /
    • v.4 no.3
    • /
    • pp.204-213
    • /
    • 1995
  • A finite element program is developed to analyze the flow phenomena in SMC compression molding as a viscoplastic model. The calculation of temperature distribution is also carried out by uncoupling the thermal analysis from the flow analysis. SMC molding processes with a flat plate substructure and the one with a T-shaped rib are considered in numerical simulation. The numerical results provide deformed shapes, temperature distribution in a SMC charge, and the forming load. The simulation of compression molding of a flat plate with a T-shaped rib requires a remeshing technique for the whole process.

  • PDF

Finite Element Analysis of Injection/Compression Molding Process (사출압축성형 공정에 대한 유한요소 해석)

  • 이호상
    • Transactions of Materials Processing
    • /
    • v.13 no.2
    • /
    • pp.180-187
    • /
    • 2004
  • A computer code was developed to simulate the filling stage of the injection/compression molding process by a finite element method. The constitutive equation used here was the compressible Leonov model. The PVT relationship was assumed to follow the Tait equation. The flow-induced birefringence was related to the calculated flow stresses through the linear stress-optical law. Simulations of a disk part under different process conditions including the variation of compression stroke and compression speed were carried out to understand their effects on birefringence variation. The simulated results were also compared with those by conventional injection molding.

제너 다이오드를 이용한 공기 유속계측 장치개발

  • 김영재;김희식;조흥근
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.496-500
    • /
    • 1996
  • An air flow measurement device is proposed. The thermal characteristic of a semiconductor element is adopted as a cooling parameter of thermal convection rate. The difference between forced convection and natural convection of two Zener diodes results enough difference in temperature. Experiment at various air flow conditions shows the measuring capability of the air flow in a duct. This measuring device has some merits, such as a reliability n hard field condition, simple circuit for signal processing, small volume of the element, less air flow resistance, independance of various ai temperature. The experimental result shows that it is an exact and usefull air flow measurement device.

  • PDF

Finite Element Analysis for Steady State Forming Process of Polycrystalline Metal Including Texture Development (집합조직의 발전을 반영하는 다결정재의 정상상태성형공정해석)

  • 김응주;이용신
    • Transactions of Materials Processing
    • /
    • v.5 no.4
    • /
    • pp.297-304
    • /
    • 1996
  • A process model is formulated considering the effect of crystallographic texture developed in forming process. The deformation induced plastic anisotropy can be predicted by capturing the evolution of texture during large deformation in the polycrystalline aggregate. The anisotropic stiffness matrix for the aggregate is derived and implemented in Eulerian finite element code using a Consistent Penalty method. As an application the evolution of texture in rolling drawing and extrusion processes are simulated. The numerical results show good agreements with report-ed experimental textures.

  • PDF

A Study on the Formability of Sheet Metal Under Counter Pressure Deep Drawing (대향 액압 디프드로잉법 시 박판 성형성에 관한 연구)

  • 황종관;강대민;정수종
    • Transactions of Materials Processing
    • /
    • v.11 no.8
    • /
    • pp.676-681
    • /
    • 2002
  • The square cup deep drawing simulations for hydraulic counter pressure deep drawing are carried out by the finite element method and the formability factors which affect to the formability in case of that process are investigated. As a result, it is found that the thickness distributions keep the higher quality than that of the conventional deep drawing, and the maximum pressure increased the thickness at the die profile regions of blank. But friction coefficient decreased the thickness at the same regions.

Finite Element Analysis for Forging Processes of Rapidly Solidified Al-Si Alloys (급속응고 Al-Si계 합금의 단조공정에 대한 유한요소 해석)

  • 손현택
    • Journal of Powder Materials
    • /
    • v.5 no.1
    • /
    • pp.57-63
    • /
    • 1998
  • The densification behaviors of rapidly solidified Al-Si alloys under high temperature processing were investigated. In general, it was difficult to establish optimum process variables for forging condition through experimentation, because this was costly and time consuming. In this paper, to overcome these problems, we compared the experimental result to the finite element analysis for forging processes of rapidly solidified Al-Si alloys. The results of these simulations helped understand the distribution of relative density during various forging processes. This information is expected to assist in improving rapidly solidified Al-Si alloys forging operations.

  • PDF

Design of Algorithm for Efficient Retrieve Pure Structure-Based Query Processing and Retrieve in Structured Document (구조적 문서의 효율적인 구조 질의 처리 및 검색을 위한 알고리즘의 설계)

  • 김현주
    • Journal of the Korea Computer Industry Society
    • /
    • v.2 no.8
    • /
    • pp.1089-1098
    • /
    • 2001
  • Structure information contained in a structured document supports various access paths to document. In order to use structure information contained in a structured document, it is required to construct an index structural on document structures. Content indexing and structure indexing per document require high memory overhead. Therefore, processing of pure structure queries based on document structure like relationship between elements or element orders, low memory overhead for indexing are required. This paper suggests the GDIT(Global Document Instance Tree) data structure and indexing scheme about structure of document which supports low memory overhead for indexing and powerful types of user queries. The structure indexing scheme only index the lowest level element of document and does not effect number of document having retrieval element. Based on the index structure, we propose an query processing algorithm about pure structure, proof the indexing schemes keeps up indexing efficient in terms of space. The proposed index structure bases GDR concept and uses index technique based on GDIT.

  • PDF

Planning of Dental Implant Placement Using 3D Geometric Processing and Finite Element Analysis (3차원 기하 처리와 유한요소 분석을 이용한 치아 임플란트 식립 계획 수립)

  • Park, Hyung-Wook;Park, Chul-Woo;Kim, Myong-Soo;Park, Hyung-Jun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.17 no.4
    • /
    • pp.253-261
    • /
    • 2012
  • In order to make dental implant surgery successful, it is important to perform proper planning for dental implant placement. In this paper, we propose a decent approach to dental implant placement planning based on geometric processing of 3D models of jawbones, a nerve curve and neighboring teeth around a missing tooth. Basically, the minimum enclosing cylinders of the neighboring teeth around the missing tooth are properly used to determine the position and direction of the implant placement. The position is computed according to the radii of the cylinders and the center points of their top faces. The direction is computed by the weighted average of the axes of the cylinders. For a cylinder whose axis passes the position along the direction, its largest radius and longest length are estimated such that it does not interfere with the neighboring teeth and the nerve curve, and they are used to select the size and type of an implant fixture. From the geometric and spatial information of the jawbones, the teeth and the fixture, we can construct the 3D model of a surgical guide stent which is crucial to perform the drilling operation with ease and accuracy. We have shown the validity of the proposed approach by performing the finite element analysis of the influence of implant placement on bone stress distribution. Adopted in 3D simulation of dental implant placement, the approach can be used to provide dental students with good educational contents. It is also expected that, with further work, the approach can be used as a useful tool to plan for dental implant surgery.

Evaluation of Effects of Rare Earth Element and Cooling Rate on the Eutectic Reaction of Flake Graphite Cast Irons by Cooling Curve Analysis (냉각곡선 분석을 통한 편상흑연주철의 공정반응에 미치는 희토류원소 및 냉각속도의 영향 평가)

  • Lee, Sang-Hwan;Park, Seung-Yeon;Lee, Sang-Mok;Kim, Myung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.33 no.1
    • /
    • pp.13-21
    • /
    • 2013
  • The effects of rare earth element (R.E.) and cooling rate on the eutectic reaction of flake graphite cast irons were studied by combined analysis of macro/micro-structure and cooling curve data. The correlation between eutectic reaction parameter and macro/micro-structure was systematically investigated. Two sets of chemical compositions with the different addition of R.E. were designed to cast. Three types of molds for cylindrical specimens with the different diameters were prepared to analyze cooling rate effect. The difference between undercooling temperature and cementite eutectic temperature (${\Delta}T_1=T_{U}-T_{E,C}$), which is increased by adding R.E. and decreased by increasing cooling rate, is considered to be a suitable eutectic reaction parameter for predicting graphite morphology. According to the criterion, A-type graphite is mainly suggested to form for ${\Delta}T_1$ over $20^{\circ}C$. Eutectic reaction time (${\Delta}t$), which is decreased by adding R.E. or increasing cooling rate, is a suitable eutectic reaction parameter for predicting eutectic cell size. Eutectic cell size is found to decrease in a proportion to the decrease of ${\Delta}t$.