• Title/Summary/Keyword: Processing Platform

Search Result 1,607, Processing Time 0.03 seconds

Development of Web Service for Liver Cirrhosis Diagnosis Based on Machine Learning (머신러닝기반 간 경화증 진단을 위한 웹 서비스 개발)

  • Noh, Si-Hyeong;Kim, Ji-Eon;Lee, Chungsub;Kim, Tae-Hoon;Kim, KyungWon;Yoon, Kwon-Ha;Jeong, Chang-Won
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.10
    • /
    • pp.285-290
    • /
    • 2021
  • In the medical field, disease diagnosis and prediction research using artificial intelligence technology is being actively conducted. It is being released as a variety of products for disease diagnosis and prediction, which are most widely used in the application of artificial intelligence technology based on medical images. Artificial intelligence is being applied to diagnose diseases, to classify diseases into benign and malignant, and to separate disease regions for use in identification or reading according to the risk of disease. Recently, in connection with cloud technology, its utility as a service product is increasing. Among the diseases dealt with in this paper, liver disease is a disease with very high risk because it is difficult to diagnose early due to the lack of pain. Artificial intelligence technology was introduced based on medical images as a non-invasive diagnostic method for diagnosing these diseases. We describe the development of a web service to help the most meaningful clinical reading of liver cirrhosis patients. Then, it shows the web service process and shows the operation screen of each process and the final result screen. It is expected that the proposed service will be able to diagnose liver cirrhosis at an early stage and help patients recover through rapid treatment.

A New Incentive Based Bandwidth Allocation Scheme For Cooperative Non-Orthogonal Multiple Access (협력 비직교 다중 접속 네트워크에서 새로운 인센티브 기반 주파수 할당 기법)

  • Kim, Jong Won;Kim, Sung Wook
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.6
    • /
    • pp.173-180
    • /
    • 2021
  • Non Orthogonal Multiple Access (NOMA) is a technology to guarantee the explosively increased Quality of Service(QoS) of users in 5G networks. NOMA can remove the frequent orthogonality in Orthogonal Multiple Access (OMA) while allocating the power differentially to classify user signals. NOMA can guarantee higher communication speed than OMA. However, the NOMA has one disadvantage; it consumes a more energy power when the distance increases. To solve this problem, relay nodes are employed to implement the cooperative NOMA control idea. In a cooperative NOMA network, relay node participations for cooperative communications are essential. In this paper, a new bandwidth allocation scheme is proposed for cooperative NOMA platform. By employing the idea of Vickrey-Clarke-Groves (VCG) mechanism, the proposed scheme can effectively prevent selfishly actions of relay nodes in the cooperative NOMA network. Especially, base stations can pay incentives to relay nodes as much as the contributes of relay nodes. Therefore, the proposed scheme can control the selfish behavior of relay nodes to improve the overall system performance.

Method of ChatBot Implementation Using Bot Framework (봇 프레임워크를 활용한 챗봇 구현 방안)

  • Kim, Ki-Young
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.1
    • /
    • pp.56-61
    • /
    • 2022
  • In this paper, we classify and present AI algorithms and natural language processing methods used in chatbots. A framework that can be used to implement a chatbot is also described. A chatbot is a system with a structure that interprets the input string by constructing the user interface in a conversational manner and selects an appropriate answer to the input string from the learned data and outputs it. However, training is required to generate an appropriate set of answers to a question and hardware with considerable computational power is required. Therefore, there is a limit to the practice of not only developing companies but also students learning AI development. Currently, chatbots are replacing the existing traditional tasks, and a practice course to understand and implement the system is required. RNN and Char-CNN are used to increase the accuracy of answering questions by learning unstructured data by applying technologies such as deep learning beyond the level of responding only to standardized data. In order to implement a chatbot, it is necessary to understand such a theory. In addition, the students presented examples of implementation of the entire system by utilizing the methods that can be used for coding education and the platform where existing developers and students can implement chatbots.

Filtering-Based Method and Hardware Architecture for Drivable Area Detection in Road Environment Including Vegetation (초목을 포함한 도로 환경에서 주행 가능 영역 검출을 위한 필터링 기반 방법 및 하드웨어 구조)

  • Kim, Younghyeon;Ha, Jiseok;Choi, Cheol-Ho;Moon, Byungin
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.1
    • /
    • pp.51-58
    • /
    • 2022
  • Drivable area detection, one of the main functions of advanced driver assistance systems, means detecting an area where a vehicle can safely drive. The drivable area detection is closely related to the safety of the driver and it requires high accuracy with real-time operation. To satisfy these conditions, V-disparity-based method is widely used to detect a drivable area by calculating the road disparity value in each row of an image. However, the V-disparity-based method can falsely detect a non-road area as a road when the disparity value is not accurate or the disparity value of the object is equal to the disparity value of the road. In a road environment including vegetation, such as a highway and a country road, the vegetation area may be falsely detected as the drivable area because the disparity characteristics of the vegetation are similar to those of the road. Therefore, this paper proposes a drivable area detection method and hardware architecture with a high accuracy in road environments including vegetation areas by reducing the number of false detections caused by V-disparity characteristic. When 289 images provided by KITTI road dataset are used to evaluate the road detection performance of the proposed method, it shows an accuracy of 90.12% and a recall of 97.96%. In addition, when the proposed hardware architecture is implemented on the FPGA platform, it uses 8925 slice registers and 7066 slice LUTs.

Development of CanSat System With 3D Rendering and Real-time Object Detection Functions (3D 렌더링 및 실시간 물체 검출 기능 탑재 캔위성 시스템 개발)

  • Kim, Youngjun;Park, Junsoo;Nam, Jaeyoung;Yoo, Seunghoon;Kim, Songhyon;Lee, Sanghyun;Lee, Younggun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.8
    • /
    • pp.671-680
    • /
    • 2021
  • This paper deals with the contents of designing and producing reconnaissance hardware and software, and verifying the functions after being installed on the CanSat platform and ground stations. The main reconnaissance mission is largely composed of two things: terrain search that renders the surrounding terrain in 3D using radar, GPS, and IMU sensors, and real-time detection of major objects through optical camera image analysis. In addition, data analysis efficiency was improved through GUI software to enhance the completeness of the CanSat system. Specifically, software that can check terrain information and object detection information in real time at the ground station was produced, and mission failure was prevented through abnormal packet exception processing and system initialization functions. Communication through LTE and AWS server was used as the main channel, and ZigBee was used as the auxiliary channel. The completed CanSat was tested for air fall using a rocket launch method and a drone mount method. In experimental results, the terrain search and object detection performance was excellent, and all the results were processed in real-time and then successfully displayed on the ground station software.

A Mobility Service for the Transportation Vulnerable Based on MyData (마이데이터 기반 교통약자 이동지원서비스 모델)

  • Choi, Hee Seok;Lee, Seok Hyoung;Park, Moon Soo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.1
    • /
    • pp.31-40
    • /
    • 2023
  • Various policies and services are being implemented in Korea and other countries, such as the expansion of convenience facilities for mobility support, the provision of special means of transportation, and the establishment of public transportation route plans and fare policies based on data and AI-based movement pattern analysis to ensure the mobility rights of the weak in transportation. However, A research is still needed to improve service convenience in order to more conveniently use the desired means of transportation in a necessary situation from the viewpoint of the transportation vulnerable. This study examines the policies and services for the promotion of mobility for the transportation disadvantaged, and presents a MyData-based service model for mobility support for the transportation disadvantaged. In the proposed service model, the transportation-disabled person can freely choose and use the means of transportation according to individual circumstances, and receive the same transportation welfare voucher benefits provided by the state or government. The proposed service model defines the MyData platform that supports the safe collection and use of personal data, the authentication of traffic welfare recipients based on MyData, and the payment function for fee settlement after using the service as key components. In this research, the service satisfaction from the user's point of view was investigated by implementing the proposed service model and providing a demonstration service for the transportation vulnerable in Daejeon.

Analysis of YouTube's role as a new platform between media and consumers

  • Hur, Tai-Sung;Im, Jung-ju;Song, Da-hye
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.2
    • /
    • pp.53-60
    • /
    • 2022
  • YouTube realistically shows fake news and biased content based on facts that have not been verified due to low entry barriers and ambiguity in video regulation standards. Therefore, this study aims to analyze the influence of the media and YouTube on individual behavior and their relationship. Data from YouTube and Twitter are randomly imported with selenium, beautiful soup, and Twitter APIs to classify the 31 most frequently mentioned keywords. Based on 31 keywords classified, data were collected from YouTube, Twitter, and Naver News, and positive, negative, and neutral emotions were classified and quantified with NLTK's Natural Language Toolkit (NLTK) Vader model and used as analysis data. As a result of analyzing the correlation of data, it was confirmed that the higher the negative value of news, the more positive content on YouTube, and the positive index of YouTube content is proportional to the positive and negative values on Twitter. As a result of this study, YouTube is not consistent with the emotion index shown in the news due to its secondary processing and affected characteristics. In other words, processed YouTube content intuitively affects Twitter's positive and negative figures, which are channels of communication. The results of this study analyzed that YouTube plays a role in assisting individual discrimination in the current situation where accurate judgment of information has become difficult due to the emergence of yellow media that stimulates people's interests and instincts.

Threat Situation Determination System Through AWS-Based Behavior and Object Recognition (AWS 기반 행위와 객체 인식을 통한 위협 상황 판단 시스템)

  • Ye-Young Kim;Su-Hyun Jeong;So-Hyun Park;Young-Ho Park
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.4
    • /
    • pp.189-198
    • /
    • 2023
  • As crimes frequently occur on the street, the spread of CCTV is increasing. However, due to the shortcomings of passively operated CCTV, the need for intelligent CCTV is attracting attention. Due to the heavy system of such intelligent CCTV, high-performance devices are required, which has a problem in that it is expensive to replace the general CCTV. To solve this problem, an intelligent CCTV system that recognizes low-quality images and operates even on devices with low performance is required. Therefore, this paper proposes a Saying CCTV system that can detect threats in real time by using the AWS cloud platform to lighten the system and convert images into text. Based on the data extracted using YOLO v4 and OpenPose, it is implemented to determine the risk object, threat behavior, and threat situation, and calculate the risk using machine learning. Through this, the system can be operated anytime and anywhere as long as the network is connected, and the system can be used even with devices with minimal performance for video shooting and image upload. Furthermore, it is possible to quickly prevent crime by automating meaningful statistics on crime by analyzing the video and using the data stored as text.

Real-time Steel Surface Defects Detection Appliocation based on Yolov4 Model and Transfer Learning (Yolov4와 전이학습을 기반으로한 실시간 철강 표면 결함 검출 연구)

  • Bok-Kyeong Kim;Jun-Hee Bae;NGUYEN VIET HOAN;Yong-Eun Lee;Young Seok Ock
    • The Journal of Bigdata
    • /
    • v.7 no.2
    • /
    • pp.31-41
    • /
    • 2022
  • Steel is one of the most fundamental components to mechanical industry. However, the quality of products are greatly impacted by the surface defects in the steel. Thus, researchers pay attention to the need for surface defects detector and the deep learning methods are the current trend of object detector. There are still limitations and rooms for improvements, for example, related works focus on developing the models but don't take into account real-time application with practical implication on industrial settings. In this paper, a real-time application of steel surface defects detection based on YOLOv4 is proposed. Firstly, as the aim of this work to deploying model on real-time application, we studied related works on this field, particularly focusing on one-stage detector and YOLO algorithm, which is one of the most famous algorithm for real-time object detectors. Secondly, using pre-trained Yolov4-Darknet platform models and transfer learning, we trained and test on the hot rolled steel defects open-source dataset NEU-DET. In our study, we applied our application with 4 types of typical defects of a steel surface, namely patches, pitted surface, inclusion and scratches. Thirdly, we evaluated YOLOv4 trained model real-time performance to deploying our system with accuracy of 87.1 % mAP@0.5 and over 60 fps with GPU processing.

Comparative analysis of the digital circuit designing ability of ChatGPT (ChatGPT을 활용한 디지털회로 설계 능력에 대한 비교 분석)

  • Kihun Nam
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.967-971
    • /
    • 2023
  • Recently, a variety of AI-based platform services are available, and one of them is ChatGPT that processes a large quantity of data in the natural language and generates an answer after self-learning. ChatGPT can perform various tasks including software programming in the IT sector. Particularly, it may help generate a simple program and correct errors using C Language, which is a major programming language. Accordingly, it is expected that ChatGPT is capable of effectively using Verilog HDL, which is a hardware language created in C Language. Verilog HDL synthesis, however, is to generate imperative sentences in a logical circuit form and thus it needs to be verified whether the products are executed properly. In this paper, we aim to select small-scale logical circuits for ease of experimentation and to verify the results of circuits generated by ChatGPT and human-designed circuits. As to experimental environments, Xilinx ISE 14.7 was used for module modeling, and the xc3s1000 FPGA chip was used for module embodiment. Comparative analysis was performed on the use area and processing time of FPGA to compare the performance of ChatGPT products and Verilog HDL products.