• Title/Summary/Keyword: Processing Optimization

Search Result 1,582, Processing Time 0.025 seconds

Performances of Multidisciplinary Design Optimization Methodologies in Parallel Computing Environment (다분야통합최적설계 방법론의 병렬처리 성능 분석)

  • Ahn, Moon-Youl;Lee, Se-J.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.12
    • /
    • pp.1150-1156
    • /
    • 2007
  • Multidisciplinary design optimization methodologies play an essential role in modern engineering design which involves many inter-related disciplines. These methodologies usually require very long computing time and design tasks are hard to finish within a specified design cycle time. Parallel processing can be effectively utilized to reduce the computing time. The research on the parallel computing performance of MDO methodologies has been just begun and developing. This study investigates performances of MDF, IDF, SAND and CO among MDO methodologies in view of parallel computing. Finally, the best out of four methodologies is suggested for parallel processing purpose.

Recovering Incomplete Data using Tucker Model for Tensor with Low-n-rank

  • Thieu, Thao Nguyen;Yang, Hyung-Jeong;Vu, Tien Duong;Kim, Sun-Hee
    • International Journal of Contents
    • /
    • v.12 no.3
    • /
    • pp.22-28
    • /
    • 2016
  • Tensor with missing or incomplete values is a ubiquitous problem in various fields such as biomedical signal processing, image processing, and social network analysis. In this paper, we considered how to reconstruct a dataset with missing values by using tensor form which is called tensor completion process. We applied Tucker factorization to solve tensor completion which was built base on optimization problem. We formulated the optimization objective function using components of Tucker model after decomposing. The weighted least square matric contained only known values of the tensor with low rank in its modes. A first order optimization method, namely Nonlinear Conjugated Gradient, was applied to solve the optimization problem. We demonstrated the effectiveness of the proposed method in EEG signals with about 70% missing entries compared to other algorithms. The relative error was proposed to compare the difference between original tensor and the process output.

Decomposition Based Parallel Processing Technique for Efficient Collaborative Optimization (효율적 분산협동설계를 위한 분해 기반 병렬화 기법의 개발)

  • Park, Hyung-Wook;Kim, Sung-Chan;Kim, Min-Soo;Choi, Dong-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.818-823
    • /
    • 2000
  • In practical design studies, most of designers solve multidisciplinary problems with complex design structure. These multidisciplinary problems have hundreds of analysis and thousands of variables. The sequence of process to solve these problems affects the speed of total design cycle. Thus it is very important for designer to reorder original design processes to minimize total cost and time. This is accomplished by decomposing large multidisciplinary problem into several multidisciplinary analysis subsystem (MDASS) and processing it in parallel. This paper proposes new strategy for parallel decomposition of multidisciplinary problem to raise design efficiency by using genetic algorithm and shows the relationship between decomposition and multidisciplinary design optimization (MDO) methodology.

  • PDF

A Hybrid Genetic Ant Colony Optimization Algorithm with an Embedded Cloud Model for Continuous Optimization

  • Wang, Peng;Bai, Jiyun;Meng, Jun
    • Journal of Information Processing Systems
    • /
    • v.16 no.5
    • /
    • pp.1169-1182
    • /
    • 2020
  • The ant colony optimization (ACO) algorithm is a classical metaheuristic optimization algorithm. However, the conventional ACO was liable to trap in the local minimum and has an inherent slow rate of convergence. In this work, we propose a novel combinatorial ACO algorithm (CG-ACO) to alleviate these limitations. The genetic algorithm and the cloud model were embedded into the ACO to find better initial solutions and the optimal parameters. In the experiment section, we compared CG-ACO with the state-of-the-art methods and discussed the parameter stability of CG-ACO. The experiment results showed that the CG-ACO achieved better performance than ACOR, simple genetic algorithm (SGA), CQPSO and CAFSA and was more likely to reach the global optimal solution.

Symbiotic Organisms Search for Constrained Optimization Problems

  • Wang, Yanjiao;Tao, Huanhuan;Ma, Zhuang
    • Journal of Information Processing Systems
    • /
    • v.16 no.1
    • /
    • pp.210-223
    • /
    • 2020
  • Since constrained optimization algorithms are easy to fall into local optimum and their ability of searching are weak, an improved symbiotic organisms search algorithm with mixed strategy based on adaptive ε constrained (ε_SOSMS) is proposed in this paper. Firstly, an adaptive ε constrained method is presented to balance the relationship between the constrained violation degrees and fitness. Secondly, the evolutionary strategies of symbiotic organisms search algorithm are improved as follows. Selecting different best individuals according to the proportion of feasible individuals and infeasible individuals to make evolutionary strategy more suitable for solving constrained optimization problems, and the individual comparison criteria is replaced with population selection strategy, which can better enhance the diversity of population. Finally, numerical experiments on 13 benchmark functions show that not only is ε_SOSMS able to converge to the global optimal solution, but also it has better robustness.

Personalized Web Service Recommendation Method Based on Hybrid Social Network and Multi-Objective Immune Optimization

  • Cao, Huashan
    • Journal of Information Processing Systems
    • /
    • v.17 no.2
    • /
    • pp.426-439
    • /
    • 2021
  • To alleviate the cold-start problem and data sparsity in web service recommendation and meet the personalized needs of users, this paper proposes a personalized web service recommendation method based on a hybrid social network and multi-objective immune optimization. The network adds the element of the service provider, which can provide more real information and help alleviate the cold-start problem. Then, according to the proposed service recommendation framework, multi-objective immune optimization is used to fuse multiple attributes and provide personalized web services for users without adjusting any weight coefficients. Experiments were conducted on real data sets, and the results show that the proposed method has high accuracy and a low recall rate, which is helpful to improving personalized recommendation.

Shared Spatio-temporal Attention Convolution Optimization Network for Traffic Prediction

  • Pengcheng, Li;Changjiu, Ke;Hongyu, Tu;Houbing, Zhang;Xu, Zhang
    • Journal of Information Processing Systems
    • /
    • v.19 no.1
    • /
    • pp.130-138
    • /
    • 2023
  • The traffic flow in an urban area is affected by the date, weather, and regional traffic flow. The existing methods are weak to model the dynamic road network features, which results in inadequate long-term prediction performance. To solve the problems regarding insufficient capacity for dynamic modeling of road network structures and insufficient mining of dynamic spatio-temporal features. In this study, we propose a novel traffic flow prediction framework called shared spatio-temporal attention convolution optimization network (SSTACON). The shared spatio-temporal attention convolution layer shares a spatio-temporal attention structure, that is designed to extract dynamic spatio-temporal features from historical traffic conditions. Subsequently, the graph optimization module is used to model the dynamic road network structure. The experimental evaluation conducted on two datasets shows that the proposed method outperforms state-of-the-art methods at all time intervals.

Topology Optimization of Reinforcement Pattern for Pressure-Explosion Proof Enclosure Door in Semiconductor Manufacturing Process (위상최적화 기법을 이용한 반도체 공정용 압력방폭형 외함 도어의 보강 패턴 최적화)

  • Yeong Sang Kim;Dong Seok Shin;Euy Sik Jeon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.2
    • /
    • pp.56-63
    • /
    • 2023
  • This paper presents a method using finite element analysis and topology optimization to address the issue of overdesign in pressure-explosion proof enclosure doors for semiconductor manufacturing processes. The design conducted in this paper focuses on the pattern design of the enclosure door and its fixation components. The process consists of a solid-filled model, a topology optimization model, and a post-processing model. By applying environmental conditions to each model and comparing the maximum displacement, maximum equivalent stress, and weight values, it was confirmed that a reduction of about 13% in weight is achievable.

  • PDF

An Improved Cat Swarm Optimization Algorithm Based on Opposition-Based Learning and Cauchy Operator for Clustering

  • Kumar, Yugal;Sahoo, Gadadhar
    • Journal of Information Processing Systems
    • /
    • v.13 no.4
    • /
    • pp.1000-1013
    • /
    • 2017
  • Clustering is a NP-hard problem that is used to find the relationship between patterns in a given set of patterns. It is an unsupervised technique that is applied to obtain the optimal cluster centers, especially in partitioned based clustering algorithms. On the other hand, cat swarm optimization (CSO) is a new meta-heuristic algorithm that has been applied to solve various optimization problems and it provides better results in comparison to other similar types of algorithms. However, this algorithm suffers from diversity and local optima problems. To overcome these problems, we are proposing an improved version of the CSO algorithm by using opposition-based learning and the Cauchy mutation operator. We applied the opposition-based learning method to enhance the diversity of the CSO algorithm and we used the Cauchy mutation operator to prevent the CSO algorithm from trapping in local optima. The performance of our proposed algorithm was tested with several artificial and real datasets and compared with existing methods like K-means, particle swarm optimization, and CSO. The experimental results show the applicability of our proposed method.